

Design Considerations of Highly-Efficient Active Clamp Flyback Converter Using GaNFast™ Power ICs

> Lingxiao (Lincoln) Xue March 29th 2017

Navitas GaN Power IC Navitas GaN Power

- Added power in USB PD and Quick Charge requires dramatically higher power density (>20 W/in³)
- Higher efficiency and lower power loss are required in high density adapters
- How to dramatically improve the power density?

Navitas

- No snubber losses, all leakage energy is recovered
- ZVS soft switching over entire operation range
- ZCS soft turn-off for output rectifier
- Clean waveforms reduce EMI
- Enable small adapter design with high-frequency switching

Towards Highly Efficient ACF

Minimizing Energy Circulated Back to Source

- Minimize negative i_{Lm} for ZVS
 - \rightarrow Depending on C_o(tr)
 - GaN has only $\frac{1}{2}$ C_o(tr) even with $\frac{1}{2}$ R_{DS(ON)}
 - GaN needs less circulating energy

	IPA60R299CP	IPA60R385CP	NV6115
Voltage Rating (V)	650	650	650
R _{DS(ON)}	270	350	160
C _o (tr) (pF)	120	96	50
Q _g (nC)	22	17	2.5
Q _{rr} (nC)	3900	3100	0

GaN ACF Minimized Negative i_{Lm}

- GaN ACF needs only 0.2A negative current for ZVS vs. Si's 0.5A
- GaN ACF RMS is only 0.9A vs. Si's 1.1A
- Besides,
 - GaN has <u>no</u> body diode loss
 - Low high-frequency gate-charge loss

Minimizing Energy Circulated in Cr

- Minimizing the shaded area
- Two methods identified
 - Creating deeper current dip
 - Using secondary resonant scheme

Method 1 GaN Increases Current Dip

Method 2 Secondary Resonance Scheme*

- Output capacitor to resonate with transformer leakage
- Clamping capacitor Cr has low voltage ripple
- More current pushed to the secondary side

*Navitas Patent Pending

Dr. Lingxiao Xue, APEC 2018

S2 ON

Ŧ

S1 ON

Method 2 Secondary Resonance Reduces Circulating Energy

*Measured results of 45W ACF

65W USB-PD ACF Using GaNFast[™] Power ICs

Input	Universal AC (85-265V _{AC} , 47-63Hz)
Output	Type C, USB-PD 2.0 (5-20V)
Frequency	250-350 kHz
Power Density	2.4 W/cc (39 W/in ³) uncased 1.5 W/cc (24 W/in ³) cased
Construction	4-layer, 2-oz Cu PCB, "No heatsink" design

Efficiency Meets CoC Tier 2 and DOE LV VI

Efficiency: 4-Points Average

Efficiency: 10% Load

• Saved PCB space

-> Noise confined

• Reduces standby loss

• Avoided powertrain layout mistakes

Integration Eases ACF Design

GaNFast[™] Half-Bridge Power IC

- Asymmetric Half-Bridge for ACF
 - 2x GaN FETs (High-side 600 m Ω + Low-side 300 m Ω)
 - 2x GaN drivers
 - GaN Logic (level-shift, bootstrap, UVLO, shoot-through, ESD)

27W USB-PD 3.0 Using GaNFast[™] HB Power IC

Input	Universal AC (85-265V _{AC} , 47-63Hz)
Output	Type C, USB-PD 3.0 (27W)
Frequency	200-400 kHz
Power Density	1.2 W/cc (19 W/in ³) uncased 0.7 W/cc (11 W/in ³) cased
Construction	4-layer, 2-oz Cu PCB, "No heatsink" design

Navitas

Efficiency: Meets CoC Tier 2 and DOE LV VI

0.94 115V_{ac} 0.92 Efficiency 230V_{ac} 0.9 0.88 CoC 0.86 Tier 2 0.84 0.82 0.8 Vo=5V Vo=9V Vo=11V

Efficiency: 4-Points Average

Efficiency: 10% Load

High Frequency 65W ACF with GaN ICs

 $V_{ac}(V)$

Conclusion

- Highly-efficient ACF should minimize the circulating energy
- GaN is uniquely suitable for high frequency ACF operation
- Half-Bridge GaNFast Power IC simplifies ACF design and improves density
- Examples of 27W and 65W PD designs are given showing high efficiency/density