Electric motors benefit from GaNFast™

Navitas

Energy • Efficiency • Sustainability

Alfred Hesener *Sr. Director Industrial and Consumer, alfred.Hesener@navitassemi.com* 09/2022

Older motors are being replaced with BLDC* motors and inverters Navitas

- BLDC* motors are more efficient (80%+) versus older AC motors (60%), smaller and lighter
- However, BLDC motors need an inverter to operate \rightarrow additional system complexity
- The inverter allows for torque and speed control
- → Efficiency gain and added features are the key reasons for the trend to BLDC

* BLDC = brushless (or electronically commutated) DC motor

GaN switches for Motor Inverters Full system solution

- Motor inverter: GaNFast[™] halfbridges for compact and highly efficient power stage, with significantly reduced cooling efforts
- PFC in totem-pole or boost converter configuration with highest efficiency and smallest passive components
- Ultracompact, efficient aux supply (QR/ACF) with copackaged controller

© Navitas Semiconductor 2022 / Confidential

Total cost of ownership (TCO) for motor inverters

Cost category	Raw						Transpor-		
	materials	Component cost			Assembly	Design effort	tation	Usage	Recycling
		Power	Control	Passives					
	Copper,	Power	Microcontroll	EMI filters,	Manual	R&D	Size and	Electrical	Complex
Typical	Aluminum	switches,	ers, digital	heatsinks,	assembly,	bandwidth for	weight	efficiency	material
drivers		rectifiers	signal	inductors	thermals	control loop,			mix
			processors			gate drive			
GaNFast™ advantage	Reduced	Reduced	Easier control	Lower	Reduced	Ease of use	Smaller	Lower losses	Smaller /
	materials	component	circuit through	losses	assembly cost	through high	heatsink,	for lower	no
	consumption	cost through	GaNSense™	enable	with smaller /	integration	motors for	electricity	heatsink
	through	higher	Higher control	reduced	no heatsink	levels of	reduced	consumption	for
	lower losses	integration	loop	heatsink,		GaNFast™	weight and		reduced
		(less external	bandwidth	lower			size		waste
		components)	possible	emissions					
				for smaller					
				EMI filter					

- Biggest cost impact through reduced heatsink size and electricity consumption
- Additionally, better performance and protections

Total loss comparison of Silicon IGBT, silicon MOSFET and GaN FET

Power Loss Comparison between IGBT, SJ-MOSFET, and GaNFast IC in Motor Drives

Application case:

- Bus voltage 400V
- Current 7A RMS
- Motor power 2kW
- Switching 6V/ns
- GaN and MOSFET same conduction losses

Using GaN FETs, the inverter efficiency increases by 2.5% (96% \rightarrow 98,5%) and total losses are halved (15W \rightarrow 6,8W)

→ Significant reduction in cost, weight and size of thermal mgmt (like heatsink, fans, other thermal components)

➔ Benefit even larger at higher switching frequency

Conduction Losses

Key benefits of GaNFast[™] and GaNSense[™] Enabling motor-integrated inverters

- High, stable and repeatable performance → design margins can be reduced
 - Very low prop delay for best control loop performance
- Controlled gate drive conditions enable **outstanding reliability**
- Much reduced component count → system size and cost reduced, enabling motor-integrated inverters
- Easy to use → fast time to market
- Lossless current sensing removes shunt resistors → cost, size, reliability and performance improvement
- Fast and precise overcurrent protection → improved system robustness
- On-chip temperature sensing for better thermal design margin
- Precise overtemperature turn-off \rightarrow improved system robustness

GaNFast[™] and GaNSense[™] offer highest performance, integration, robustness

Motor inverter using three halfbridges Enable thermal spreading on the PCB

Part #	Туре	V _{DS(CONT)} (V)	R _{DS(ON)} (mΩ, typ)	Package	Status	Motor power*
NV6247	Half-Bridge	650	160/160	PQFN 6x8	Production	300
NV6245C	Half-Bridge	050	275/275	PQFN 6x8	Production	200

(* Motor power estimated and depending on application conditions, in particular thermal design)

- Scalable solution for motor power 40...300W without heatsink*
- Very few external components for compact design
- Good thermal spreading through separation of the power stages

Reference design 300W motor integrated inverter / power stage

Board diameter 56mm

Thermal scan @ 300W, 20kHz Peak temperatures are ~52°C

Reference design 300W motor integrated inverter

Inverter efficiency for different switching speeds (20V/ns, 50V/ns)

Using GaNFast™ and GaNSense™ for Motor Inverters

- Trends in electric motor drive applications:
 - Improved energy efficiency
 - System cost and TCO reduction
 - Size and weight reduction
 - Improved performance
 - New / different motors
- Challenge to reduce design time / effort and improve end customer experience

GaNFast[™] and GaNSense[™] offer convincing solutions for motor drive trends and challenges – the next level of performance and integration

Thank you!

Navitas

Energy • Efficiency • Sustainability

