

GaN-based High Frequency and High-power Density 2-in-1 Bidirectional **OBCM** Design for EV Application

Minli Jia, Hao Sun

Navitas Semiconductor Shanghai EV Design Center, Shanghai, China

Introduction

- The integrated design of OBC and LV DC/DC can reduce the system size, improve the power density and reduce the cost.
- Wide-band gap semiconductor device GaN brings an opportunity to further improve the power density of Power-Supply-Unit in EV.

System Topology

- Interleaved CCM Totem-pole PFC for Bi-AC/DC Stage.
- Bi-directional CLLC with delay-time control of wide voltage range output ,ZVS and high switching frequency (450 kHz~1.2 MHz) range for Bi-DC/DC Stage.
- Hard switching full bridge for LV DC/DC.
- All 650V GaN devices for high voltage side.

Bi-AC/DC Stage

Table 1

Totem-pole PFC per phase parameter		
Vac	220 V	
lac_RMS	16 A	
Vbus	400 V	
f_Line/f_s	50 Hz / 100 kHz	

$$L_{PFC_{
m min}} = rac{V_{{\scriptscriptstyle Bus}}\!/\!2}{k_{Ripple} \cdot \sqrt{2} \cdot I_{{\scriptscriptstyle Ac_rms}} \cdot 2 \cdot f_s}$$

100 kHz design

- Usually, the value of k_{Ripple} is set to 1 for per-phase current. Based on the parameters in Table 1, minimum inductance satisfying the demand is 45 uH.
- High-flux core, low loss for high frequency applications, volume is reduced by about 20% compared with the traditional 50 kHz PFC inductor design.

Bi-DC/DC Stage

Modulation Strategy

- LC resonant circuit as a second-order system is suitable for phase plane analysis.
- Delay-time control can achieve high gain output adjustment for DC/DC.

$$i_{Lr}(t) = \left\{ egin{array}{l} rac{V_{in}}{R_o} R_1 \mathrm{sin}\left(\omega_r t
ight) & 0 \leqslant t < T_lpha \ rac{V_{in}}{R_o} R_2 \mathrm{sin}\left[\omega_r (t-T_lpha) + eta_{start_angle}
ight] & T_lpha \leqslant t < T_lpha + T_eta \ rac{V_{in}}{R_o} R_3 \mathrm{sin}\left[\omega_r (t-T_lpha - T_eta) + \pi - \gamma
ight] & T_lpha + T_eta \leqslant t < rac{T_s}{2} \end{array}
ight.$$

Phase plane analysis for half switching cycle

pcim EUROPE

At the same 6.6 kW

power, the volume of

based

frequency transformer

smaller than that of Si

based design

9 May 2023 15:05-17:00 Paper Allocation: H01-8161

9 - 11.5.2023 NUREMBERG, GERMANY

high-

than 50%

Characters of Bi-DC/DC Stage and Mag. Design

 α , β , γ , fs VS Vo

- fs>fr is maintained throughout the output voltage range and keeping "V" shape.
- Larger Angle α means larger system gain.
- Narrow fs range and good for transformer design.

Comparison of transformer volumes at different fs

117810mm³

500Khz

Functions of Navitas NV651X-series GaN devices

GaNFast functionality Typical double-pulse test waveform

• 12~18 V for DRIVE to SK.

366036mm³

120Khz Si / SiC

467280mm³

- Integrated level-shift and deglitch circuit for improved anti*interference* performance
- GaNFast power ICs are easy-to-use, highspeed, highperformance 'digital-in, power-out' building blocks.
- Monolithic integration of GaN gate drive & GaN power stage enables ~zero loss in turn-off because the gate-drive loop has ~zero impedance, eliminates parasitic gate-loop inductance and prevents gate ringing and glitching.

2-in-1 OBC Prototype and key waveforms

Table 2 Main parameters of 2-in-1 OBC

	6.6 kW Bi-directional OBC + 3.0 kW LV DC-DC	
	Parameters	Value
	V_{AC}	85~265 V
	V_{BAT}	250~500 V, 280~460 V full load
	I _{AC_Max}	32 A
	I _{HVo_Max}	23.5 A
Power	Dower	6.6 kW charging,
	220 V _{AC} /6.0 kVA discharging	
ОВС	L _{PFC}	50 uH
Res. Cap	f _{PFC}	100 kHz
	Res. Inductor	4.0 uH
	Res. Cap.	40 nF (equivalent)
	Res. Frequency	400 kHz
	Trans. turns ratio	1.2
LV DC-DC	LV V _{OUT}	9~16 V (nom. 13.5 V)
	LV P _{OUT}	3.0 kW (3.6 kW peak)
	I _{LVo_Max}	222 A
GaN	Q ₁ ~Q ₄ , S ₁ ~S ₈	NV6514 power IC
Devices	S ₉ ~S ₁₂	NV6513 power IC

Prototype "2-in-1" OBC dimensions

Thermal solution for GaN devices

Platform set-up

Thermal and Efficiency

Thermal test results of GaN at 65°C coolant water

Efficiency of OBC @ charging and discharging

high-frequency applications

is verified