

GaN Half-Bridge Power IC and AHB/Totem-Pole Topologies Enable 240W, 150cc, PD3.1 Solution with 96% Efficiency

Tom Ribarich, Sr. Dir. Strategic Marketing, Navitas Semiconductor, tom.ribarich@navitassemi.com

Presentation Outline

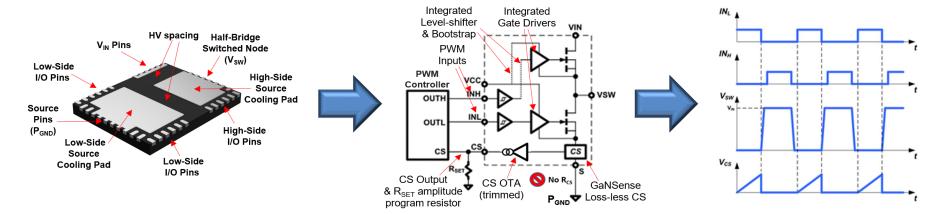
- 240W GaN Chargers
- Topology Comparisons
- NV6269C GaNSense Half-Bridge IC
- 240W-1C PD3.1 150cc Charger Design
- Conclusions

240W USB-C GaN Chargers Are Here!

Anker Prime 240W-3C/1A 104.5 x 78.4 x 33.8 mm = 277 cc Power Density = 0.87 W/cc Efficiency = 92% (90Vac/100%)

WOTOBEUS 240W-3C/2A 113 x 86 x 32 mm = 311 cc Power Density = 0.77 W/cc Efficiency = 91.3% (90Vac/100%)

CHIPOFY 240W-3C/1A 90 x 65 x 36 mm = 211 cc Power Density = 1.14 W/cc Efficiency = 90.5% (90Vac/100%)


NV6269C Enables Next Gen High-Frequency, High EFF, High Power Density, Half-Bridge Topologies!

Topology	PFC Stage	DC-DC Stage	Pros	Cons	Summary
PFC + QR (< 120W)			 2x HV Switches 1x SR Switch Variable Vout Low cost Many controllers 	Low Power Density Low Efficiency Low flux cancellation	Used for low cost, low power density, variable Vout solutions (PD3.1)
PFC + LLC (200-300W)	→ 1	GaN Cr2 La State C	High flux cancellation High efficiency High power density Many controllers	 3x HV switches 2x SR switches Fixed Vout Addt'l buck for variable Vout High cost 	Used for high efficiency, high power density, fixed Vout solutions
PFC + AHB (200-300W)	01 Count	51	 1x SR Switch Variable Vout Good flux cancellation High efficiency High power density 	3x HV switches Few controllers Medium cost	Used for high efficiency, high power density, variable Vout solutions (PD3.1)
TTP + AHB (200-300W)	ACC	51 Cr Tx O1	 1x SR Switch Variable Vout Good flux cancellation Highest efficiency Highest power density 	6x HV switches High cost Few controllers	Used for highest efficiency, highest power density, variable Vout solutions (PD3.1)

NV6269C GaNSense Half-Bridge IC

NV6269C GaNSense Half-Bridge IC					
Features	Simplified Schematic	Package			
GaNFast™ Power IC Two independent logic PWM inputs 3.3, 5, 12 V PWM input compatible Floating high-side with internal level shift Integrated high-side bootstrap Integrated gate drive & voltage Wide V _{CC} range (10 to 24 V) Hi & Lo-side turn-on dV/dt slew rate control GaN Power FETs	SVHO SV OCP CS CS OS	QFN 8x10			
150/150 mΩ (NV6267C/M), 70/70 mΩ (NV6269C/M) Zero reverse recovery charge 800 Vmax_tran & 650 Vmax_cont ratings GaN Sense™ Technology Integrated loss-less current sensing Over-current & over-temperature protection Autonomous low-current standby mode	Typical Application Schematic (LLC) Vcc (+) Cvcc (+) Cvc				
Small, low-profile SMT PQFN 8x10 mm footprint Minimized package inductance Large cooling pads	CS _{OUT} Rier S	RDDH V _{SW}			
Key System Benefits ✓ No external half-bridge driver required ✓ Loss-less current sensing = +0.5 EFF benefit ✓ No ext. RCS resistors, no 85C RCS hot spot ✓ OCP, OTP protection features ✓ Autonomous low standby current mode ✓ Enlarged cooling pads ✓ Low RDSON + larger package enables 50% to 67% higher power levels!	DC _{BUS} (+)	Vour(+)			

NV6269C = Highest Integration, Lowest RDSON, Largest Cooling Pads & Simple Circuit Block

NV6269C

- ✓ QFN 8x10 package
- ✓ Large cooling pads
- √ Low-side I/O pins
- √ High-side I/O pins
- √ 650V functional isolation

Fully-Integrated GaNSense Half-Bridge IC

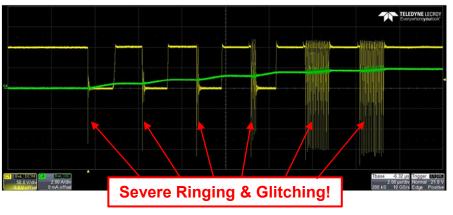
- ✓ Wide range VCC
- ✓ PWM inputs
- ✓ Level-shifting
- ✓ Gate drivers
- √ Bootstrap
- ✓ 2x 70m GaN power FETs
- ✓ Loss-less GaNSense with CS output

Simple Half-Bridge Circuit Block

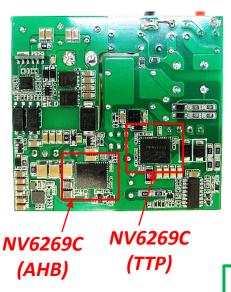
- ✓ 2x Low-side wide range PWM inputs
- 650V GaN half-bridge switched node output
- ✓ Programmable CS output
- Extra protection circuits (OCP/OTP)

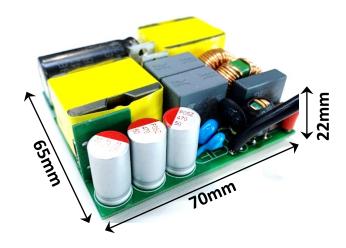
GaNSense Half-Bridge IC = Smallest PCB Area, Fewest Components, No Ringing, No Glitching!

NV6269C GaNSense Half-Bridge IC

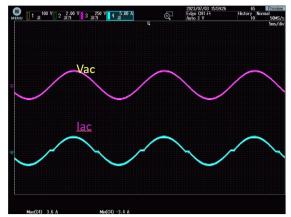

- √ 13 components
- √ 122mm2 footprint
- ✓ Int. level shifters
- ✓ Int. bootstrap
- ✓ Int. gate drivers
- ✓ No exposed gates

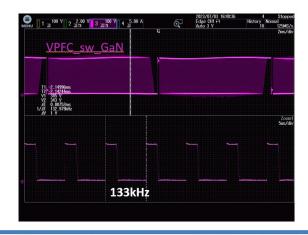
Discrete GaN Half-Bridge


- × 33 components
- × 250mm2 footprint
- × 1x ext. HB driver HVIC
- × 1x ext. HV bootstrap
- × 2x HV bypass diodes
- × 2x gate drive circuits
- × Exposed gates

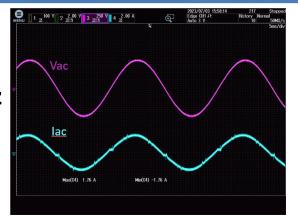


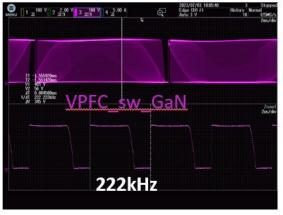
240W-1C TTP + AHB + GaNSense = 150 cc

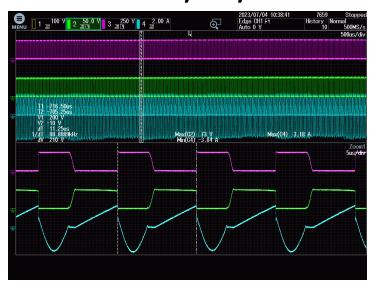


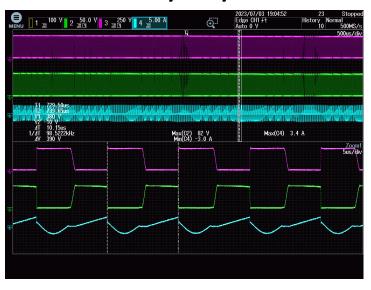


- > Efficiency: 96 % (@90Vac/36V/6.7A)
- \rightarrow PCBA: 70 x 65 x 22 mm³ = 100 cc
- \triangleright Cased: 76 x 71 x 28 mm³ = 150 cc
- > +4% to +5.5% efficiency benefit vs existing designs!
- 29% to 52% smaller size vs existing designs!

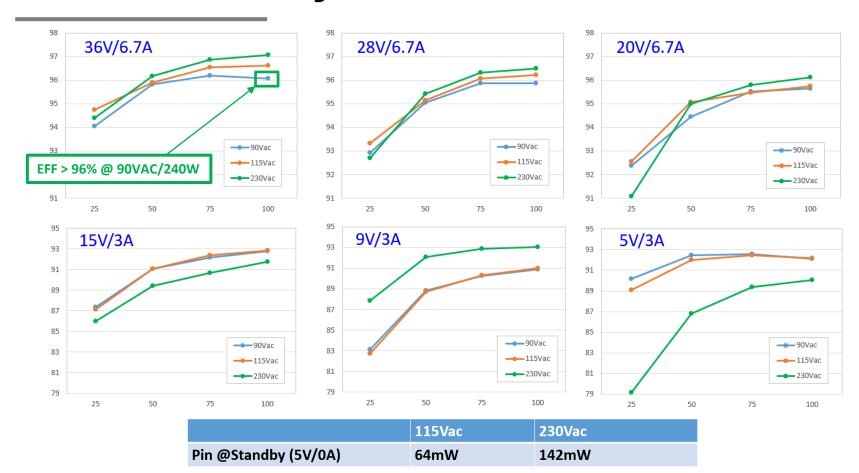

TTP Waveforms = Clean & Sinusoidal

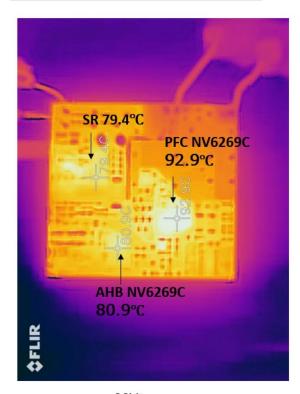

115Vac/60Hz @ 240W

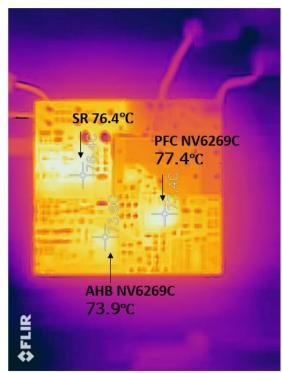

230Vac/60Hz @ 240W

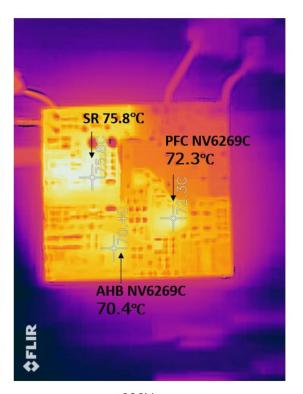


AHB ZVS Waveforms = Smooth & Clean

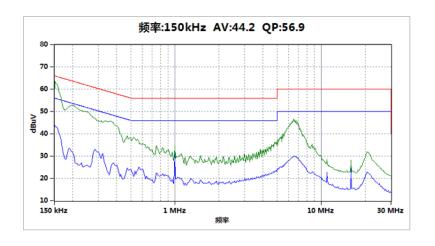

115Vac/36V/6.7A

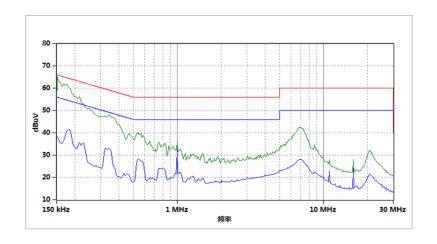

230Vac/36V/6.7A




Peak Efficiency > 97%

Lower Losses = Lower Thermals!

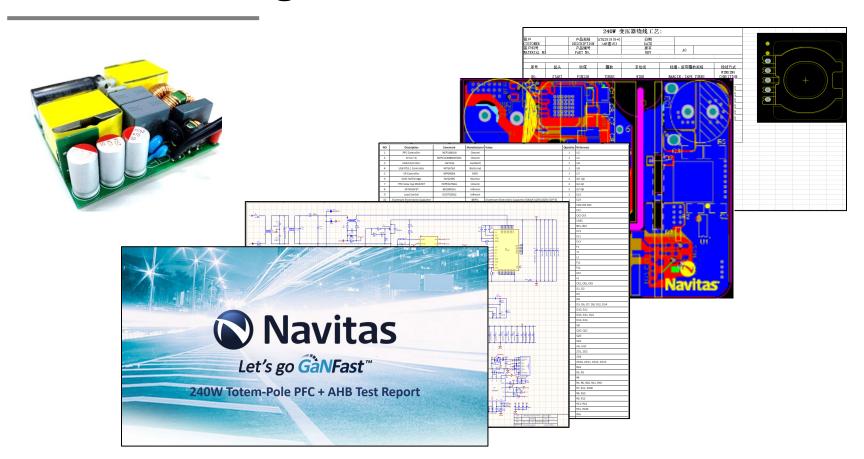



90Vac 115Vac 230Vac

ZVS = Low EMI!

115Vac

230Vac



Conclusions

- ✓ Existing 240W GaN chargers still have room for improvement (0.77 1.1 W/cc, 90.5% 92% efficiency)
- ✓ Use Totem-Pole + AHB for highest efficiency, high frequency, ZVS, & smallest size
- ✓ NV6269C is an excellent GaN half-bridge building block IC, easy to use, small footprint, & reliable switching
- ✓ 240W-1C charger design using Totem-Pole + AHB + GaN Half-Bridge IC demonstrates 96% efficiency, 150cc size, & low EMI
- √ +4% to +5.5% higher efficiency vs existing designs!
- √ 29% to 52% smaller size vs existing designs!

EVBs & Design Files Available!

