GaN High Density 300W AC-DC Converter

300 W, 29 W/in³, 95.4%

Tom Ribarich¹, Peter Bredemeier², Stephen Oliver³

¹,³ Navitas Semiconductor, USA
² ONgineer GmbH, Germany

Abstract

A 300W AC-to-DC high-density and low-profile converter has been designed and demonstrated.

The circuit topology includes a 2-phase interleaved PFC input stage, an LLC dc-dc stage, and a synchronous rectification output stage. The design includes GaN power ICs and off-the-shelf controllers running at 500kHz.

This new design has resulted in a power density of 29W/in³.

The waveforms demonstrate zero-voltage switching in all stages and the performance results show high efficiency and acceptable component temperatures.

Proprietary Navitas technology = monolithic integration of 650V eMode GaN FET, GaN Driver, GaN Logic

Mass production GaNFast Power ICs are “Digital-in, Power-out” with 20x lower drive loss than silicon (<35 mW at 1 MHz). Zero impedance between driver output and FET gate means stable, high-efficiency, high-speed operation. Very fast prop delay and turn-on/off of 10-20 ns (from PWM input to change in FET VDS) and high dv/dt immunity (200 V/ns) with slew-rate programmability mean easy high-frequency operation. Switching performance is fast, smooth and predictable with no overshoot, no spikes, no oscillations and smooth ‘S-curves’ transitions for easy EMI compliance. Note the zero-loss turn-on and zero-loss turn-off at 1 MHz.

Circuit Topology and Schematics

Commercial On Semiconductor controllers were pushed to their highest frequency limit.

- **PFC**
  - Interleaved CrCm/DCM Boost using NCP1632 (with frequency-foldback function to reduce power consumption)
  - Minimum 200 kHz (90 V<sub>in</sub>, peak-of-line) to maximum 450 kHz
  - Inductors are 2x EF20 with TDK EPCOS N49 material.

- **DC-DC**
  - LLC using NCP13992 (with adaptive dead-time features, soft-start, comprehensive protection and HV start-up) and NCP4305/NCP43080 (SR)
  - 500 kHz normal operation (with higher frequency during load / start-up burst conditions)
  - LLC transformer is ED26 with N49
World’s First GaN Power ICs
www.navitassemi.com

GaN High Density 300W AC-DC Converter

Simple Construction

- AC Socket
- PFC Inductors
- EMI CMC
- Input Bridge
- DC Bus Caps
- LLC x/fmr + Lr
- GaN IC Card
- L=150mm
- H=15mm
- W=75mm
- PCBA = 150 x 75 x 15 mm
- 168 cc = 1.8 W/cc (29 W/in³)
- Output Caps
- SR Card

Modular construction maximizes design flexibility. Low-cost, 2-layer motherboard for bulk caps, magnets, etc. and 4-layer daughtercards for the powertrain (extra Cu for thermal management). Additional thermal management required (heat spreading, Cu wrapper, etc.).

Cool Operation

Worst-case condition (90 VAC, full load, 25°C, open-frame). Images highlight the balanced power dissipation across the main passive components and GaNFast Power ICs (85-90°C).

Smooth, High-Frequency Operation

- Note very fast switching of the GaN Power ICs
- Controller timing may be accelerated to take advantage of the new technology to reduce dead-times and improve converter efficiency
- CrCM interleaved PFC Boost 90 V_in, 400 V_out, 300 W, 240 kHz (peak of AC line)

Quiet Operation

Predictable, smooth-switching, high-performance GaNFast Power ICs, plus correct layout ensure good EMI spectra performance vs. EN55022.

High Performance

- Efficiency vs load
- Full load, 25°C, open-frame, no air-flow. US DoE “Level VII” ave. 94%. Curves are extremely high and flat, from ~25%-100% load.

Acknowledgements

Thank you to the ONgineer team in Espelkamp, Germany, for their collaboration and design support. Thanks also to the ON Semiconductor teams in Rožnov, Czech Republic and Phoenix, AZ for their collaboration and support.

CrCM Interleaved PFC Boost 90 V_in, 400 V_out, 300 W, 240 kHz (peak of AC line)