

O Navitas Let's go GàNFast™

GaN Power IC Adoption Takes Off in Fast Charging Market

APEC 2019 PowerAmerica IS19, March 21, 2019

"Advances in the Adoption of Wide Bandgap Semiconductors in Commercial and Industrial Applications" Dan Kinzer, COO/CTO Navitas

Dan.kinzer@navitassemi.com

Navitas Semiconductor

Navitas

GaN 🔊 Navitas

Pov GåNFast

- World's first GaN power IC company
 - JEDEC qualified
 - Volume production with fast ramp
- Navitas: Latin for *Energy*
 - Bringing a new energy to power electronics
- Founded 2014 with HQ in El Segundo, CA
- Proven management team
 - 60+ employees
- Tier 1 manufacturing partners
 - TSMC wafer foundry, Amkor packaging
- Strong financial investors
 - Over \$1B capital under management

navitas

noun | en·er·gy

World's First GaNFast[™] Power ICs

Fastest, most efficient GaN Power FETs First & Fastest Integrated GaN Gate Drivers World's First GaNFast Power ICs

GàNFast[™]

>20x faster than silicon

- >5x faster than cascoded GaN
- Proprietary design
- Gate is fragile and sensitive to noise

>3x faster than any other gate driver

- Proprietary design
- 30+ patents granted
- Fast, protected gate, no need for negative drive

- Simple, fast and reliable
- Easy to use and package

Up to 40MHz switching, 5x higher density & 20% lower system cost

Navitas eMode Power FET Technology

- Lateral device technology \rightarrow Convenient isolation and easy voltage scaling
- High breakdown field (10X) and high mobility (2X) \rightarrow Low $R_{DS(ON)}$, Low Q_{OSS}
- Lateral device technology \rightarrow Low Q_G, easy to drive, easy to integrate
- Processed in established CMOS line \rightarrow High yield, high capacity
- Multiple metal technology using standard CMOS processing equipment

GàNFast[™]

Single Switch GaN Power IC

Monolithic integration at 650V

- GaN FET (*range 120-300 mΩ*)
- GaN gate driver (fast, no overshoot)
- Wide input voltage range (10-30V)
- GaN regulator (well controlled gate voltage)
- dV/dt control (programmable 10-100V/nsec)
- Hysteretic input, ESD, fault protection
- Fast and controlled start-up

High Integration: Half-Bridge GaN Power IC

2 MHz Soft-Switching Operation

Monolithic integration at 650V

- 2x 650V eMode GaN FETs (a/symmetrical range 120-600 mΩ)
- 2x 6V GaN gate drivers
- 2x 30V to 6V GaN regulators and UVLO circuits
- 650V GaN level-shifters and bootstrap drivers
- GaN Logic (shoot-through protection, fault mgmt, ESD, etc...)

GàNFast™

Complex Design → Made Simple

Half-Bridge Discrete GaN

PCB Area: 24 x 42 ~ 1,000 mm²

- 20x smaller PCB area
- 40+ fewer components
- Lower cost
- Robust & protected
- Simple
- Easy layout

Half-Bridge NV6115 GaN Power ICs + isolator and bootstrap diode

PCB Area: $6 \times 8 = 48 \text{ mm}^2$

PCB Area: $18 \times 20 = 360 \text{ mm}^2$

Half-Bridge NV6252 GaN *Power IC*

Application Profile for ACF Charger GaNFast

Mission Profile Driven HTOL (ZVS)

ZVS test bench replicates stresses seen in ACF application

GàNFast™

Lifetime Estimation in Charger Application

GàNFast™

Reliability → **Qualification** → **Release**

Reliability models on IC building blocks = Robust design

Mission profile driven reliability = Protected Customer

Reference	Test Conditions	Duration	Lots	S.S.		
JESD22-A113 J-STD-020	Preconditioning (MSL1): Moisture Preconditioning + 3x reflow: HAST, UHAST, TC & PC	N/A	3	308	PASS (0/308)	
JESD22-A104	Temperature Cycle: -55°C / 150°C	1,000cy	3	77	PASS (0/231)	
JESD22-A122	Power Cycle: Delta Tj = 100°C	10,000cy	3	77	PASS (0/231)	
JESD22-A110	Highly Accelerated Stress Test: 130°C / 85%RH / 100V V _{DS}	96hrs	3	77	PASS (0/231)	
JESD22-A108	High Temperature Reverse Bias: 150°C / 520V V _{DS}	1,000hrs	3	77	PASS (0/231)	
JESD22-A108	High Temperature Gate Bias: 150°C / 6V V _{GS}	1,000hrs	3	77	PASS (0/231)	
JESD22-A108	High Temperature Operating Life	1,000hrs	3	77	PASS (0/231)	
JESD22-A108	Early Life Failure Rate	24 hrs	3	1,000	PASS (0/3,000)	
JS-001-2014	Human Body Model ESD	N/A	1	3	PASS 0/3	
JS-002-2014	Charged Device Model ESD	N/A	1	3	PASS 0/3	

Comprehensive reliability monitoring

	Metric	Results		
→	Equivalent device hours tested*	1.5 billion hours		
	FIT*	0.6		

*Statistics calculated from HTOL tests

GaNFast[™]

PowerAmerica Project Objectives

Project Title:

65W High-Efficiency High-Density Adapter with Improved Manufacturability

Objectives:

Create a commercially compelling platform that sets an industry standard in energy efficiency, power density & is manufacturing proven & volume ready (TRL≥8) for US OEMs.

Major Milestones:

Aug 2017 – 1st proto Nov 2017 – eval & optimization Feb – final design May – manufacturing validation **Deliverables:**

30 adapter ref designs

1. Advances over silicon or conventional approaches: Advancement & commercialization of Navitas GaN power ICs

2. Markets impacts: *mobile chargers, travel adapters (consumer electronics)*

- 3. Timeframe for commercialization: Q3 2018
- 4. Quantitative benefits over state-of-the-art: 50% higher density, 30% improved energy efficiencies, improved manufacturability at a lower cost per watt 5. Impact on the cost of WBG compared to Silicon: A high-volume platform that demonstrates WBG superiority over silicon in performance <u>and</u> cost 6. Potential for Job Creation Economic impact: Significant job creation for US manufacturing partner(s) & US OEMs

7.. Workforce Development and Education: *All R&D and manufacturing is 100% based in the US with significant workforce development and education with Navitas, suppliers, partners and customers*

GàNFast™

Key Elements For New Adaptors

World's Smallest 65W USB-PD

Power, Output	65 W USB-PD				
Topology	ACF with NV6115, NV6117 GaNFast Power ICs				
Frequency	600 kHz				
Size	27 cc (45 cc with case)				
Density	2.4 W/cc (39 W/in ³) uncased 1.5 W/cc (24 W/in ³) cased				
Efficiency	93.3% peak (115 V _{AC}) 93.2% at 90 V _{AC} , full load DoE Level VI, Euro CoC (EuP) Tier 2				

115 V_{AC}, 20 V / 3.25 A, 25°C ambient, no case, no airflow, no heatsink 20mins steady state operation. Maximum case <70°C

4-Point Average Efficiency

High Frequency Magnetics -> Made Manufacturable

- SR on secondary winding, minimized L_k & R_{ac}
- Shielding integrated as primary winding
- Safety rule compliance

Design Details & Thermal Performance

NV6117 NV6115 ACFIC

65W/90Vac

GaNFast[™]

Component max temperature is 90°C

Accomplishments & Outcomes

Accomplishments

- Completed 65W design
 - Verified efficiency, density, thermal, EMI, etc.
- Technology platform adopted and released to production
 - World's thinnest universal 45W adapter (Mu One)

• US Manufacturing Impact

- Reduced labor content, costs
 - Fully automated transformer, reduced component count
- Reduced manufacturing costs
 - Improved manufacturing quality & consistency (yield)
 - Automated transformer assembly
 - Reduced re-work
- Significant US OEM interest to drive global adoption

PowerAmerica Project: 65W USB-PD 3.0, 27 cc, 2.4 W/cc (39 W/in³)

GàNFast[™]

Commercial realization: Mu One 45W USB-PD 3.0, only 14 mm thin cased

Existing: "The Mu"

COMPATIBLE WITH ALL TABLETS & SMARTPHONES *SLOW CHARGE FOR TABLETS & EFFICIENT II

AUTHENTIC DETECT FOR SAFE & EFFICIENT IOS CHARGING

- 14 mm profile
- CE, UL, etc.

- 90-264 V_{AC} input
- 2 x 6 W = 12 W (Type A)

Challenge: Fast Charging "Mu One"

- 14 mm profile
- CE, UL, etc.

Images courtesy Made-in-Mind

 90-264 V_{AC} input
2 x 6 W = 12 W (Type A) 45 W (USB-PD Type C)

45 W in 11 mm = HF Planar ACF

Cool Operation

90 V_{AC}, 45 W, 25 °C, uncased, no airflow, no thermal compound / heatsinking

High Efficiency Across Line, Load, Output Voltage

Quiet EMI (Conducted, Radiated)

Mu One: From Prototype to Mass Production

- Thanks to Matt Judkins, CEO of Made-in-Mind (Mu One)
- Available via <u>www.kickstarter.com</u> and <u>www.amazon.com</u> and airport stores

Images courtesy Made-in-Mind

RAVPower 45W: Same Platform

45W Power Delivery 2.5X Faster

RAVPUWER

RAVPOWER New Logo. New I A Leap In Power

Available now on www.amazon.com

Images courtesy RAVPower

AUKEY USB-C GaNFast Chargers

Available now on www.amazon.com

Images courtesy AUKEY

GaNFast Design Support

- Global technical support
 - Direct support
 - Partner support (VAR)
- Strong AE team
- Strong FAE team
- GaNFast Design Support Program
 - From schematic to EMI
 - Components, magnetics, PCB
 - Critical component support
 - System reliability support

Let's go GaNFast™