GaN Power IC Technology
Past, Present, and Future

The 29th International Symposium on Power Semiconductor Devices and ICs
Plenary Session

Dan Kinzer, CTO/COO, Navitas Semiconductor
dan.kinzer@navitassemi.com
May 29, 2017
GaN Power IC Technology

• Why GaN on Silicon?
• GaN IC Development History
• Navitas AllGaN™ Power ICs
• Application examples
• Future directions
• Summary
GaN Power IC Technology

• Why GaN on Silicon?
• GaN IC Development History
• Navitas AllGaN™ Power ICs
• Application examples
• Future directions
• Summary
Performance Limits of Power Semi Materials

Important material attributes

- High voltage operation
- Electric Field (MV/cm)
- Energy gap (eV)
- Thermal Conductivity (W/cm·°C)
- Electron velocity (x107 cm/s)
- Melting point (x1000 °C)
- High T° applications

Theoretical 1-D $R_{DS(ON)}/BV_{DSS}$ for Vertical Devices

- Si limit
- SiC limit
- GaN limit
- Diamond limit

Si limit

$T = 300$ K

Maximum Voltage (V)

$R_{DS(ON)}$ (mΩ·cm²)

GaN limit
Performance Limits of Power Semi Materials

Important material attributes:
- High voltage operation
- Energy gap (eV)
- Electron velocity (x10^7 cm/s)
- Melting point (x1000 °C)
- Thermal conductivity (W/cm·°C)
- High T° applications

Current Performance:
- Vertical Silicon
- Lateral GaN

GaN 2-D Limit for Lateral Devices:
- (with 400 ohm-sq 2-DEG)
- 2.5 MV/cm
- 3.5 MV/cm
- Almost matches Diamond!

Theoretical 1-D $R_{DS(ON)}/BV_{DSS}$ for Vertical Devices

- Si limit
- SiC limit
- Diamond limit

$T = 300$ K

Maximum Voltage (V)

$R_{DS(ON)}$ (mΩ·cm²)

BV_{DSS}
Lateral GaN Advantage for Off-line Applications

- WBG GaN material allows high electric fields so high carrier density can be achieved.
- Two-dimensional electron gas with AlGaN/GaN heteroepitaxy structure gives very high mobility in the channel and drain drift region.
- Lateral device structure achieves extremely low Q_g and Q_{oss} and allows integration.
- Integration on silicon substrates means mature low cost wafer fabrication is available.

![Diagram of Lateral GaN Structure]

- Source
- Drain
- Gate
- Dielectric
- AlGaN barrier
- 2deg
- GaN Buffer
- Transition Layer
- Silicon Substrate
Comparison of Different GaN Technologies

- **Cascode GaN Switch**
 - Relatively easy to control gate
 - Traditional packages
 - Large package inductance
 - Prone to oscillation
 - No dV/dt control
 - Complicated multi-die package

- **E-mode GaN Switch**
 - Extremely low gate charge
 - No reverse recovery loss
 - Easy to package
 - Low package inductance
 - Can control dV/dt
 - Hard to control gate
GaN vs Silicon Output Characteristics

- Switching loss:
 \[P_{\text{LOSS}} = E_{\text{OSS}}(V_{\text{DS}}) \times F_{\text{SW}} \]
- \(C_{\text{OSS}} \rightarrow \text{Delay (limits } F_{\text{SW}}) \)
- Too slow \(\rightarrow \) partial ZVS \(\rightarrow E_{\text{OSS}} \) loss

- Si \(C_{\text{OSS}} \) is 50x-100x higher than GaN at \(V_{\text{DS}} < 30\text{V} \)
- Si \(P_{\text{LOSS}} \) is 3x higher than GaN at 200V (partial ZVS)
- Big effect at full or light load condition

- Further information: “\(C_{\text{OSS}} \) Hysteresis in Advanced Superjunction MOSFETs”, Harrison, APEC 2016
Hard-Switch \Rightarrow Soft-Switch with **GaN Power IC**

Primary Switch Power Loss:

\[
P_{\text{FET}} = P_{\text{COND}} \ast k + P_{\text{DIODE}} + P_{\text{T-ON}} + P_{\text{T-OFF}} + P_{\text{DR}} + P_{\text{QRR}} + P_{\text{QOSS}}
\]

- **k-factor**: >1 due to increased circulating current, duty cycle loss
- **$P_{\text{T-On}}$**: $= 0$ (soft-switch)
- **P_{Qoss}**: $\downarrow 10\times$ 2-3× (GaN C_{OSS} charging/discharging loss negligible up to 2MHz)
- **P_{DRIVER}**: $\downarrow 10\times$ (GaN P_{DR} negligible up to 2MHz)
- **P_{QRR}**: $= 0$
- **P_{DIODE}**: $\downarrow 3\times$ 2× (synchronous rectification with improved dead-time control)
- **$P_{\text{T-OFF}}$**: $= 0$ Reduced (near-zero drive loop impedance with integration)

>10x frequency increase possible with **higher efficiencies**
Class Phi-2 DC/AC converter

- 50% less loss than RF Si
- 16x smaller package
- Air-core inductors
- Minimal FET loss
- Negligible gate drive loss

![Class Phi-2 DC/AC converter diagram](image)

<table>
<thead>
<tr>
<th>Technology</th>
<th>V</th>
<th>Pack (mm)</th>
<th>F\textsubscript{SW} (MHz)</th>
<th>Eff. (%)</th>
<th>Power (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF Si (ARF521)</td>
<td>500</td>
<td>M174 22x22</td>
<td>27.12</td>
<td>91%</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>650</td>
<td>QFN 5x6</td>
<td>27.12</td>
<td>96%</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>650</td>
<td></td>
<td>40.00</td>
<td>93%</td>
<td>115</td>
</tr>
</tbody>
</table>

- 27.12 MHz, φ2 Inverter, V\textsubscript{DS} of GaN
- 20ns/div, 150V/div

![Diagram with waveforms](image)
GaN Power IC Technology

- Why GaN on Silicon?
- **GaN IC Development History**
 - Navitas AllGaN™ Power ICs
 - Application examples
 - Future directions
 - Summary
Early years of GaN Power IC Technology

• Concept of GaN power ICs developed as potential of GaN for power widely explored
• Ideal device has simple digital I/O, and all necessary functions to manage a load, such as gate drive, sensing, protection, & control
• Integrated dMode & eMode small signal HEMT, Schottky, Power HEMT, and power rectifier were proposed and demonstrated
• Threshold shift into positive range used F- implant, with some stability issues

Since then, a variety of circuit blocks and functions have been reported:

- Comparator, with both eMode and dMode input pairs
- Temperature sensors and references
- Integrated controller functions such as sawtooth generator and PWM comparator

Multiple Power Devices on Chip

- One reported 3-phase inverter intended for medium voltage motor driver
- A novel integration of 9 bidirectional switches in AC/AC 3-phase to 3 phase matrix converter
 - Gate drive function is by eighteen rectifier circuits that receive 5 Ghz pulse trains during Intended on periods
- A low voltage assymetric synchronous buck circuit for point-of-load converter
 - An early demonstration of an integrated output buffer stage to provide a gate drive output buffer function

Hybrid Integration: Chip-on-Chip Bonding

- An alternative to full monolithic power IC integration:
- Select GaN transistors from a source wafer to provide high voltage and/or high frequency capability
- Using a designed stamp, pick the devices on an interval that matches the size of the target IC.
- Transfer and release to form the power GaN on CMOS chip on chip

Pushing GaN Power IC Technology >100 MHz

- This monolithic GaN buck converter example is showing operation with near 90% total efficiency up to 100MHz and 45V input.
- At these frequencies, high Q RF compatible air core magnetics and low ESR ceramic capacitors are essential.

<table>
<thead>
<tr>
<th>Switching frequency, f_s [MHz]</th>
<th>20</th>
<th>50</th>
<th>100</th>
<th>200</th>
<th>400</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage [V]</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>20</td>
<td>45</td>
</tr>
<tr>
<td>Maximum output power [W]</td>
<td>16.0</td>
<td>10.1</td>
<td>7.1</td>
<td>3.4</td>
<td>5.0</td>
<td>6.0</td>
</tr>
<tr>
<td>Peak power stage efficiency [%]</td>
<td>95.0</td>
<td>94.2</td>
<td>93.2</td>
<td>86.5</td>
<td>72.5</td>
<td>91.7</td>
</tr>
<tr>
<td>Peak total efficiency [%]</td>
<td>92.5</td>
<td>91.7</td>
<td>89.2</td>
<td>82.0</td>
<td>67.0</td>
<td>90.2</td>
</tr>
<tr>
<td>Inductance (L) [nH]</td>
<td>160</td>
<td>90</td>
<td>47</td>
<td>22</td>
<td>12.5</td>
<td>9.0</td>
</tr>
<tr>
<td>Duty cycle (D) [%]</td>
<td>75</td>
<td>75</td>
<td>75</td>
<td>75</td>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>

Recent Cell Library Development and Application

- A cell library includes current sources, comparators, bias and logic circuitry, a PTAT generator, and a reference.
- All of this is integrated in the example to provide a high voltage GaN single transistor Power IC with thermal protection.

Dilip Risbud, Kenneth Pedrotti, “Analog and digital cell library in High Voltage GaN-on-Si Schottky Power Semiconductor Technology,” WiPDA, Nov. 7-9, 2016 Fayetteville, Ar, USA.
A Demonstration of Half Bridge Integration

- In order to suppress current collapse, the chip substrate is connected to a passive network formed by the R_{DIV} divider and the chip capacitance that causes it to closely follow the switch node.

GaN Power IC Technology

• Why GaN on Silicon?
• GaN IC Development History
• Navitas AllGaN™ Power ICs
 • Application examples
 • Future directions
• Summary
Navitas AllGaN™ Power ICs

Fastest, most efficient GaN Power FETs

>20x faster than silicon
>5x faster than cascoded GaN
Proprietary design

iDrive First & Fastest
Integrated GaN Gate Drivers

>3x faster than any other gate driver
Proprietary design
30+ patents granted/applied

World’s First
AllGaN™ Power IC

Up to 40MHz switching, 5x higher density & 20% lower system cost
Multiple Discretes \rightarrow Monolithic Integration

- **Normally-ON (dMode)**
 - Co-pack Cascode FET
 - Discrete, External Driver
 - Multiple Chips, Two Packages

- **Normally-OFF (eMode)**
 - Co-pack Cascode FET & Driver IC
 - Charge Pump Negative Rail
 - Two Die, One Package

- **Fast, Easy, Low Cost**
Removing Speed Limits:
Navitas GaN Power IC

- **Monolithic** integration
- 10X lower drive loss than silicon
- Driver impedance matched to power device
- Short prop delay (10ns)
- Zero inductance turn-off loop
- Digital input (hysteretic)
- Rail-rail drive output
- Reduces layout sensitivity

QFN 5x6mm
Speed & Integration → Eliminate Turn-off Losses

External drivers
- Just 1-2 nH of gate loop inductance can cause unintended turn-on
- Gate resistors reduce spikes but create additional losses

Integrated GaN drivers (iDrive™)
- Eliminate the problem
- Negligible turn-off losses
GaN Power IC – Fast & Efficient

- 500 V Switching
- No overshoot / spike
- No oscillations
- ‘S-curve’ transitions
- Zero Loss Turn-on
- Zero Loss Turn-off
- Sync Rectification
- High frequency
- Small, low cost magnetics

![Graph showing GaN Power IC performance characteristics](image-url)
Monolithic integration of GaN FET, GaN Driver, GaN Logic

- 650 V eMode power device
- 10x lower drive loss than silicon (<35 mW at 1 MHz)
- Driver impedance matched to power device
- Very fast (prop delay including turn-on/off 10ns)
- Zero inductance turn-off loop
- High dV/dt immunity (200 V/ns)
 - Regulated gate voltage
 - Controllable turn-on dV/dt
- Digital input

GaN Power IC – Voltage Slew Rate Control

- dV/dt controllable from 180 V/ns to 10 V/ns for EMI optimization
Reliability Benefits of GaN Power IC

- **Sensitive eMode gate node protected from system noise and spikes**
- **Built-in regulator precisely controls gate voltage applied to eMode gate**
- **ESD protection integrated into all pins** (≥1000 V HBM, >1000 V CDM)
- **V_{MAX} on V_{CC} & V_{PWM} pins have 30 V rating**
- **Eliminates parasitic inductance, turn-off losses, and false turn-on of eMode gate**
- **All benefits while delivering the performance advantage of Navitas’ GaN Power ICs!**
Taking GaN Beyond JEDEC & Industry Norms

• GaNSPEC DWG
 • GaN Standards for Power Electronic Conversion Devices Working Group

• Broad industry cooperation

• Defining new standards and guidelines for GaN quality & reliability
 • Test methods
 • Reliability & qualification procedures
 • Datasheet parameters

APEC 2017 Industry Presentation
High-Frequency Half-Bridge Integration

Disparate technologies:
Hybrid isolator, discrete driver, discrete power, bootstrap diode

High Loss
1) Driver loss, R_G loss
2) Bootstrap diode Q_{rr}, V_f
3) Pulsed high current level shifter power

Low Loss
1) No gate driver loop parasitics, matched driver-FET capability, negligible loss vs frequency
2) Zero Q_{rr}, low V_{DSON} in synchronous charging
3) Extremely fast, low-power level shifter, multi-MHz operation, short propagation delay
AllGaN™ Half-Bridge GaN Power IC

- Integrated 650V 10A Power Circuit
 - 2x GaN FETs & 2x GaN drivers
 - Gate voltage regulation
 - Level-shift circuit, bootstrap charging
 - UVLO, ESD, shoot-through protection

600V 2 MHz

6 x 8 mm QFN

30
3x Lower Drive and Level Shift Loss at 1 MHz

FET-specific loss (e.g. I^2R) common across all options, not included.
GaN gate charge loss nearly negligible, common across all options.

Loss (W)

- **SOIC, R2113**
- **Capacitive-coupled, UCC21521**
- **Capacitive-coupled, S8801088-B-1S**
- **Inductive-Coupled, ADuM1234**
- **Inductive-Coupled, ADuM3223**
- **Inductive-Coupled, BM60210PV-C**
- **Inductive-Coupled, 2ED020106**

Loss categories explained:
- **Loss #1: Level-Shifter**
- **Loss #2: FET QG**
- **Loss #3: Quiescent**
- **Loss #4: RG**
- **Loss #5: Bootstrap**

GaN, NV62xx
5x Smaller Footprint than Best Single GaN

Digital Isolator
2x Single GaN Power ICs
Bootstrap diode
Passives

Half Bridge
GaN Power ICs
5X smaller than alternatives
GaN Power IC Technology

• Why GaN on Silicon?
• GaN IC Development History
• Navitas AllGaN™ Power ICs

• Application examples
 • Future directions
 • Summary
Power Electronics: *Speed & Efficiency are Key*

- **Speed** enables *small size, low-cost* and *faster charging*
- **Efficiency** enables *energy savings*
- With Silicon or Discrete GaN power devices, you can get one *or* the other
- With GaN power ICs, you get *both at the same time* with unequaled Speed & Efficiency

![Graph showing efficiency vs. speed (frequency)](image)

- **Up to 5x Energy Savings**
- **100x faster**
- Shrink size, weight & cost
66% Higher Power with Half-Bridge GaN Power IC

Original 15 W AC/DC charger case

Original 15 W, Si-based QR Flyback
~100 kHz, <90% efficient

Upgraded 25 W Active Clamp Flyback
Half-Bridge GaN Power IC
~400 kHz, >94% efficient
25W Cool Thermals (12.5V, 2A)

25°C ambient
Full load
90 V_{AC} input
No heatsinking

Transformer 62°C
SR FET + SR IC 62°C
ACF IC 63°C
GaN Power IC 63°C
AC Rectifier 65°C

No case Cased

Peak: 49.7°C
Average: 45.8°C
Peak: 45°C
Average: 43.3°C
Peak: 46.6°C
Average: 45.1°C
Peak: 47.2°C
Average: 41.6°C

25°C ambient
Full load
90 V_{AC} input
No heatsinking
45W, 65W 24W/in³ ACF

45W = 59.1 x 33.5 x 15.7 mm = 24 W/in³ (uncased)
2x NV6115 (160mΩ)

65W = 66.7 x 33.5 x 15.7 mm = 30 W/in³ (uncased)
1x NV6115 (160mΩ) + 1x NV6117 (110mΩ)

65W Efficiency vs. AC line
(25°C ambient, no airflow, full load)

65W Thermal Performance
(90VAC, 25°C ambient, no airflow, full load)
150W AC-19V, ~300 kHz, 21 W/in³

- 94% average per DoE Level VI

Conducted EMI

Quasi-Peak

Average

Output Power (W)
Heatsink (PFC Boost Switch)

PFC choke (Hitachi ML91S)

3x paralleled input current-limiting relays

2x DM choke (in series)

AC input

2x + 2x X-caps

CM choke (no EMI test yet)

48 V Output

Coupled Res Inductor

Coupled LLC transformer

Full bridge LLC (1/2 on each card) (using paralleled NV6117s)

Full bridge SR (80V EPC GaN) (16 or 24 TBD in final test)

Isolated power supply for SR

1 MHz, 3.2 kW 65W/in³ AllGaN™ AC/DC
GaN Power ICs Accelerate Change in Power Electronics

- Linear Regulators
- Switching Regulators
- LF Switching Regulators
- HF Switching Regulators

- 2x Energy Savings
- 3x Lower $/W

- 5x Increase in 10 years
- 80% efficiency
- 40% efficiency

- <10% improvement over 30 years
- 90% efficiency
- 95-99% efficiency

- 2x Energy Savings
- 3x Lower $/W

- 5x Increase in 10 years

- 100
- 10
- 1
- 0.1

- 1975
- 1985
- 2015
- 2025
GaN Power IC Technology

- Why GaN on Silicon?
- GaN IC Development History
- Navitas AllGaN™ Power ICs
- Application examples
- **Future directions**
- Summary
GaN Power ICs: The Road Ahead
What’s Left to Work on?

• A good P-channel for CMOS
• High density digital
• Memory (volatile, non-volatile, OTP, MTP, etc.)
• ICs rated for temperatures > 150C
• A full expansion of the cell library
• A process design kit
Summary

• GaN Power ICs set new standards for ease-of-use, speed, efficiency, density, & system cost
• Proven technology, ready for commercial use
• Best technology, for 90-305 V\textsubscript{AC} off-line applications, 25W to 5kW
• GaN Power ICs + high-frequency magnetics + new controllers = A bright future of rapid advancement in the power electronics industry!
Acknowledgements

• The entire team at Navitas

• Advisors in the preparation of the content
 • Prof. Kevin Chen, Hong Kong University of Science and Technology
 • Prof. Dragan Maksimovich, University of Colorado, Boulder
 • Dr. Tetsuzo Ueda and Dr. Yasuhiro Uemoto, both of Panasonic
GaN Power IC Technology

Past, Present, and Future

The 29th International Symposium on Power Semiconductor Devices and ICs

Plenary Session

Dan Kinzer, CTO/COO, dan.kinzer@navitassemi.com

May 29, 2017