

GaN & SiC: Accelerating Revolutions

Next-gen, high-frequency materials drive fast innovation, quick results and accelerated transitions to 'Electrify Our World'''

Stephen Oliver

VP Corporate Marketing & Investor Relations

Navitas

Energy • Efficiency • Sustainability

∾ N_{avitas} GáNFast[™] Power IC ∾ Navitas ØGeneSiC Power

© Navitas Semiconductor 2023 Contact: <u>ir@navitassemi.com</u> Note disclaimers. Information is as of the date specified only. Financial reporting and guidance as of Q1 2022 report (May 2023), update not provided

Acceleration, Revolution

Technologies

Products

Applications

Navitas

The Years of Consolidation

The Second Power Revolution (Si FETs \rightarrow GaN) Navitas

The Second Power Revolution (Si IGBTs -> SiC) Navitas

\$22B+ 'Pure-Play' Potential Opportunity (1)

Navitas

(1) Axes not to scale. Based on internal company estimates, Navitas believes that the potential market opportunity in 2026 is \$22B+ for GaN and SiC, replacing certain of the silicon market share

The Revolution... in GaN

Accelerating Integration

Accelerating Frequency

Accelerating Adoption: Mobile

1.As of 5/15/2023 2.Based on internal Navitas estimates of top mobile OEMs and their existing customer engagements

Accelerating SiC?

The Planar Problem

	Source Gate Metal P+ N- Well JFET Region N- Drift layer
Manufacturability	» Repeatable » High yield » Low cost
Performance	 » High R_{DS(ON)} / area » Slow switching » High R_{DS(ON)} / ∆ temp
Reliability	» Rugged gate oxide (stable V _{тн})

Accelerating SiC: The Trouble with Trench

	Planar	Trench	
	Gate Metal Proving Provide Metal Provide Metal Provide Metal Provide Metal Provide Metal Region N- Drift layer Browner B	P+ N+ Source P- Well N- Drift layer	
Manufacturability	 » Repeatable » High yield » Low cost 	 » Inconsistent trench etch » Lower yields » High cost 	
Performance	 » High R_{DS(ON)} / area » Slow switching » High R_{DS(ON)} / ∆ temp 	 » Lower R_{DS(ON)} / area » Faster switching » High R_{DS(ON)} / Δ temp 	
Reliability	» Rugged gate oxide (stable V _{тн})	 » Failures due to non-uniform gate oxide » Lower short-circuit capability 	

Navitas 🔊

GeneSiC

Best of Both: Trench-Assisted Planar Gate

	Planar	Trench	GeneSiC
	Gate Metal P+ P- Well JFET Region N- Drift layer	P+ Vell P- Well N- Drift layer	Gate Metal N+ Source P- Well N- Drift layer & Drain
Manufacturability	 » Repeatable » High yield » Low cost 	 Inconsistent trench etch Lower yields High cost 	 » Repeatable » High yield » Low cost
Performance	 » High R_{DS(ON)} / area » Slow switching » High R_{DS(ON)} / ∆ temp 	 » Lower R_{DS(ON)} / area » Faster switching » High R_{DS(ON)} / ∆ temp 	 » Lower R_{DS(ON)} / area » Fastest switching » Lowest R_{DS(ON)} / Δ temp
Reliability	» Rugged gate oxide (stable V _{тн})	 Failures due to non-uniform gate oxide Lower short-circuit capability 	 » Highest 100% tested avalanche » Long short-circuit withstand time » Rugged gate oxide (stable V_{тн})

Navitas 🔊

GeneSiC

GeneSiC: Cooler, Faster, Rugged

Navitas GeneSiC[®]

Accelerating Renewables: US Inflation Reduction Act⁽¹⁾ Navitas

GaN + SiC for Solar & Energy Storage

Residential String >\$1.0B (SiC)

Commercial String >\$1.0B (SiC)

• Energy Storage

Customers in Development, Production

\$150M+ Customer Pipeline ⁽³⁾

• Residential Micro >\$1.4B (GaN)

>\$1.25B (SiC) (50% attach rate)

Total = >\$4.65B

...But Supply & Demand Don't Match

Navitas

Accelerating Adoption: EV

(1) BCG, via https://www.recurrentauto.com/research/ev-adoption-us (2) Company internal estimate 2030, 30M EV/yr, based on DNV and Navitas analysis. Note: Assumes 150 kW traction inverter, 100 kWh battery, \$100/kWh battery cost and typical 230 mile range. (3) Represent select potential, engaged customers. Logos do not indicate binding long-term agreements.

Accelerating Charging

More Power, Higher Voltage Bus & SiC

Bus voltage increase to: (1)

- *Reduce I²R conduction losses*
- Improve the combined motor-inverter efficiency
- *Reduced size of electric drive for the same power levels*
- Avoid AC-DC conversion losses

Higher bus voltages need higher-rated SiC powertrains

(1) Oak Ridge Nat. Lab. & National Renewable Energy Lab. Medium- and Heavy-Duty Vehicle Electrification: An Assessment of Technology and Knowledge Gaps (December 2019) ORNL/SPR-2020/7 lavitas

"Vehicle-to-Everything" Flattens the Duck Navitas

V2x with GaNFast 3-in-1

----Charging Mode

---- Discharging Mode

Accelerating Time-To-Market

System design

evaluation & feedback

Semi Design

Application-specific GaN / SiC

System know-how

drives innovation

Revenue Ramp

Customer

System Design High Frequency, High Efficiency, High Density, High Integration

> Mass Production Fast time to market

Electrical, thermal, mechanical, EMI, BOM cost, manufacturing and yields

Customer Co-Development Joint Labs / Joint Development

Close customer co-op for qualification, certifications, production readiness

GaN & SiC: Accelerating Revolutions

Next-gen, high-frequency materials drive fast innovation, quick results and accelerated transitions to 'Electrify Our World'''

Stephen Oliver

VP Corporate Marketing & Investor Relations

Navitas

Energy • Efficiency • Sustainability

∾ N_{avitas} GáNFast[™] Power IC ∾ Navitas ØGeneSiC Power

© Navitas Semiconductor 2023 Contact: <u>ir@navitassemi.com</u> Note disclaimers. Information is as of the date specified only. Financial reporting and guidance as of Q1 2022 report (May 2023), update not provided