

2022中国电力电子与能量转换大会 暨中国电源学会第二十五届学术年会及展览会 2022 China Power Electronics and Energy Conversion Congress & The 25th China Power Supply Society Conference and Exhibition

"GaNFast™ and GeneSiC™: Twin Engines Drive the Future of High-Power Applications"

Minli.Jia, Zhen.Zhou, Fisher Xu, Hao.Sun

Navitas

Energy • Efficiency • Sustainability

∾ Navitas GaNFast Power IC *∾ Navitas* ØGeneSiC Power

© Navitas Semiconductor, November 4th-7th 2022 Contact: <u>ir@navitassemi.com</u> Note[®]disclaimers: Information is as of the date specified only.

Twin Engines

Contents

- Characteristics of WBG (GaN & SiC) Devices
- Package-dependent thermal design comparisons
- Summary

GaNFast Delivers Value, Reliability, Low Cost

- Company founded in 2014
 - NASDAQ IPO Oct 2021 (NVTS)
 #1 worldwide GaN supplier
- 650 V_{DS} (800 V_{PK}) lateral GaN-on-Si process
 EMode (normally OFF) GaN power device
 Zero Q_{RR} and E_{ON}/E_{OFF} much lower than Si or SiC
- Advanced monolithic integration capability

Regulated gate drive minimizes inductance & ringing
 Logic and Protection functions fully-integrated
 Enhanced Reliability not feasible in GaN discretes

Discrete GaN is Unprotected GaN

Excessive voltage stress degrades reliability and risks failure

Crosstalk issue caused by fast switching

• Typical half-bridge circuit and crosstalk waveforms

Root cause:

• Fast switching and high dV/dt

Navitas

- Low Vth voltage of V_{GS}
- Long drive loop brings the increase of parasitic parameters
- Weak CMIT performance of the driver ICs

Ref: Wang J, Liu D, Dymond H, et al. Crosstalk suppression in a 650-V GaN FET bridgeleg converter using 6.7-GHz active gate driver[C]// 2017 IEEE Energy Conversion Congress and Exposition (ECCE). IEEE, 2017.

Benefits of Integration

• Component reliability, and *system* reliability

✓ High Efficiency

GaNFast[™]with</sup> **GaNSense**[™]

© Navitas Semiconductor

GaNFast TOLL Device Characteristics

- Features:
 - TOLL (transistor outline, lead-less), 18 m Ω typical R_{DS(ON)} @25°C
 - 12~18 V for DRIVE to SK
 - Integrated 5 V power supply unit. A typical 15 V drive voltage needs 30 ns for stability
 - Integrated level-shift and deglitch circuit for improved anti-interference performance

Double pulse test Circuit

Typical drive waveform

Based on Navitas testing of 1200V SiC MOSFETs vs. competitor products © Navitas Semiconductor

Broadest SiC FET Portfolio⁽¹⁾

GeneSiC[®] 650–6,500V Trench-Assisted Planar SiC FETs

GeneSiC[®] Most 1,700V SiC FETs

- 50+ SiC MOSFETs, array of standard packages
- Only supplier with 650V to 6,500V SiC MOSFETs

Broadest industry offering for 1700V SiC MOSFETs

1) based on GeneSiC voltage range of production released SiC MOSFETs compared to all publicly identified voltage ranges of other SiC suppliers. © Navitas Semiconductor

Best High-Speed, High-Temp Performance

Resistance

emp Performance OGen								
	Energ	gy Los	S	Figure-c	of-Merit er is better)			
	E_{OFF} @ 35A	E_{OSS} @ 800V	E _{ZVS}	Hard-Switching R _{DS} @ 175°C x (E _{ON} +E _{OFF}) (O-ul)	Soft-Switching R _{DS} @ 175°C x E _{ZVS} (O-ul)			

(9)	GeneSiC GGR30MT12J	

Sunnligr

	R_{DS(ON)} @ 25°C (mΩ)	R_{DS(ON)} @ 175°C (mΩ)	E _{ON} @ 25A (μ)	Ε_{ΟFF @ 35A (μ)}	E_{OSS @ 800V (μ)}	E _{zvs} ε _{off} -ε _{oss} (μ)	Hard-Switching R _{DS} @175°C x (E _{ON} +E _{OFF}) (Ω-μJ)	Soft-Switching R _{DS} @ 175°C x E _{zvs} (Ω-μ)
GeneSiC	40	57	600	80	34	46	38.8	2.6
#2	40	68	600	80	40	40	46.2	2.7
#3	40	80	850	390	35	355	99.2	28.4
#4	40	71	550	150	35	115	49.7	8.2
#5	45	85	520	65	29	36	49.7	3.1

Lowest power loss at high temp, high speed Highest Efficiency, Energy Savings Small Size, Light Weight, Low System Costs!

Reference 1,200V SiC FET, 40-45mΩ devices; GeneSiC = Trench-Assisted Planar G3R40MT12J; based on Navitas test result & competitive data sheet parameters.

© Navitas Semiconductor

Faster, Cooler, Longer Lifetime

Test Board

Test Circuit (1-phase of 3-phase motor drive)

Switching Waveforms (40 A pk-pk, 20 A turn-off}

Competitor SiC 45 W system loss

GeneSiC 40 W *system* loss -30% *SiC* loss

- GeneSiC trench-assisted planar FET vs. Competitor SiC FET
 - 1,200 V, 40 m Ω , D2pak in half-bridge
 - Represents 7.5 kW DC-DC converter (e.g. data center, EV)
 - 150 kHz switching = ~10x faster than Si IGBT example
- GeneSiC: >80% energy savings (>3,000 kWh/yr) vs <u>Si IGBTs</u>
 -25°C cooler = 3x longer life vs other SiC (reduced maintenance / repair costs)

High Quality, High Reliability

Navitas

100%-Tested Avalanche

Highest published capability to handle excess energy in fault condition

Critical in applications like motor drives to withstand unclamped inductive load (UIL) energy dump in situations like motor open-circuit (O.C.)

High Power Paralleling

Matching currents (Stable V_{TH})

@ 175°C

Competitor products allow threshold voltage to drop under high voltage, creating risk of turn-on error

GeneSiC packaged and bare-die FETs can be paralleled reliably for high-power applications

Long Short-Circuit Withstand Time

World-class survival duration in fault condition

Critical to prevent failures like motor short circuit where the FET faces full voltage (V_{DD}) in ON-state.

As of September '23, per GeneSiC records
 1,200 V, 20 mΩ FET
 © Navitas Semiconductor

Zero reported GeneSiC-related field failures!

- Characteristics of WBG (GaN & SiC) Devices
- Package-dependent thermal design comparisons
- Summary

Challenges for the packaging and thermal design

- With GaN/SiC die shrink, the package is also reduced, which saves footprint but brings challenges of the heat dissipation
- The design of system heat dissipation becomes very important in practical applications

Full-bridge Eval Board and Test Platform

Review: Heat Dissipation TIMS

		Coper Crawic Coper		Alt a		
	Bonded Co	pper (BC)	GAP-FILLER	Thermal	pad	Sil-pad
	AL_2O_3	ALN	CR350	Tgard-K52-2	Tpcm7000	Tgard-K5000
Specification	0.63 mm, 96% <i>AL₂O₃</i> +0.3 mm, 99.99%, Cu	0.63 mm, ALN + 0.3 mm, 99.99%, Cu	Thermal glue (0.8 mm)	Phase change material (0.076 mm)	Phase-change material (0.13)	0.127 mm
Thermal conductivity (W/m.k) or Resistance	>24	>170	3.6	0.13~0.30°C-in ² /W @20 psi clip pressure	7.5	0.40°C-in ² /W @ 50 psi clip pressure
Dielectric strength-AC (KV/mm)	>20	>20	>9	>7.8	0	>4.5
Coefficient of Thermal Expansion (x10-6/K)	6.8 (20°C~300°C)	4.7 (20°C~300°C)	N/P	N/P	N/P	N/P
Cost Contains Two devices (¥)	2.5	12	1.41	1.7	3	0.81

Review: TOLL Thermal Designs

• 5 practical application conditions for analysis.

TOLL Simulation Results

- 25 W Loss pre devices
- 65°C coolant water
- 85°C ambient temperature
- T_i design target is 125°C

Case 1 is the best thermal solution for the Toll packaging.

Case 1	l	Case 2		Case	3	Cas	e 4
Layers	т (°С)	Layers	T (°C)	Layers	т (°С)	Layers	т (°С)
Die	102.09	Die	112.07	Die	129.95	Die	136.71
Die attach	100.59	Die attach	110.5	Die attach	128.26	Die attach	135
Exposed Pad	100.16	Exposed Pad	110.06	Exposed Pad	127.82	Exposed Pad	134.57
Solder	97.907	Solder	107.81	Solder	125.6	Solder	132.38
Copper Inlay	96.976	Copper Inlay	106.88	Copper Inlay	124.7	Copper Inlay	131.5
Solder	93.906	TIM	103.81				
DBC Cu Top Layer	93.586	DBC Cu Top Layer	92.555				
DBC Al ₂ O ₃ Layer	93.34	DBC Al ₂ O ₃ Layer	92.301	0.8 mm TIM	122.05	0.203 mm SIL PAD	116.31
DBC Cu Bot. Layer	86.594	DBC Cu Bot. Layer	85.601				
0.12 mm TIM	86.43	0.12 mm TIM	85.442				
Cold Plate	81.563	Cold Plate	80.662	Cold Plate	82.302	Cold Plate	81.899
Coolant	65	Coolant	65	Coolant	65	Coolant	65
101.81 94.402 98.958 97.764 77.560 65.387 阳体显成(C)	10181 0000 10181 0000 10181 0000 10181 0000 10181 0000 10181 0000 10181 0000 10181 0000 10181 0000 10181 0000 10181 0000 10181 0000 10181 0000 10181 0000 10181 0000 10181 0000 10181 0000 10181 00000 0000 0000 00		128 60 120 42 111 24 192 06 92 86 4 622 6 5341 周休退度 (°C)		136.59 126.42 99.915 95.746 75.77 65.406 团体重度(*C)		

TOLL System Thermal Resistance

• Thermal resistance $:R_{th} = \Delta T / \Delta P$

Case 1			Case	2	Ca	se 3	Case 4		
Layers	Rth (°C/\	W)	Layers	Rth (°C/W)	Layers	Rth (°C/W)	Layers	Rth ('	°C/W)
R_Die	0.06		R_Die	0.0628 •	R_Die	0.0676	R_Die	0.0684	•
R_Die attach	0.0172		R_Die attach	0.0176	R_Die attach	0.0176	R_Die attach	0.0172	
R_Exposed Pad	0.09012		R_Exposed Pad	0.09	R_Exposed Pad	0.0888	R_Exposed Pad	0.0876	
R_jc	0.16732	R_jc	R_jc	0.1704 R_j c	R_jc	0.174 🛛 R_jc	R_jc	0.1732	R_jc
R_Solder	0.03724	R_solder1	R_Solder	0.0372 R_solder	R_Solder	0.036 R_solder	R_Solder	0.0352	R_solder
R_Copper Inlay	0.1228	R_cop1	R_Copper Inlay	0.1228 R_cop1	R_Copper Inlay	0.106 R_cop .	R_Copper Inlay	0.120	R_cop.
R_Solder	0.0128	R_ solder2	R_TIM	0.4502 R_TIM1					
R_DBC Cu Top Layer	0.00984	R_cop2	R_DBC Cu Top Layer	0.01016 R_cop2					
R_DBC Al ₂ O ₃ Layer	0.26984	R_ceramics	R_DBC Al ₂ O ₃ Layer	0.268 R_ceramic	R_0.8 mm TIM	1.58992 🛛 Р_ТІМ	R_0.203 mm SIL PAD	1.864	R_SIL pad
R_DBC Cu Bot. Layer	0.00656	R_cop3	R_DBC Cu Bot. Layer	0.00636 R_cop3			0121712		
R_0.12mm TIM	0.19468	R_TIM	R_0.12mm TIM	0.1912 [r_tim2					
R_Cold Plate	0.66252	R_AL	R_Cold Plate	0.62648 R_AL	R_Cold Plate	0.69208 R_ AL	R_Cold Plate	0.67596	
R _j _Coolant	<mark>1.4836</mark> •		R _j _Coolant	1.8828	R _j _Coolant	<mark>2.598</mark> •	R _i _Coolant	<mark>2.8684</mark>	•

• **Case 1** has the lower thermal resistance than others.

System Thermal Resistance Verification

- Q1 & Q2 short circuit.
- V_{IN} = 3 V, I_{IN} = 31.2 A
- $V_{DS1} = 0.764 \text{ V}, V_{DS2} = 0.756 \text{ V}$

Measured Temperature and Calculated Thermal ResistanceDevice NO.TemperatureLossThermal ResistanceQ156.54 °C23.82 W1.32 °C / W					
Device NO.	Temperature	Loss	Thermal Resistance		
Q1	56.54 °C	23.82 W	1.32 °C / W		
Q2	54.81 °C	23.57 W	1.26 °C / W		

• Simulation Result:

- Measured device temperature is CASE temperature (T_{CASE})
- Device loss is calculated by: $P = VDS \cdot Iin$
- Since the temperature of junction cannot be directly obtained during the actual test, the thermal resistance of the test is smaller than that of the simulation.

TOLL Thermal Model Available

• Transient thermal resistance

	Rth (°C/W)	Cth(W*s/°C)	T (s)
1	7.858E-03	6.068E-03	4.77E-05
2	5.064E-02	6.609E-03	3.35E-04
3	1.000E-06	2.861E+00	2.86E-06
4	2.028E-01	1.214E-02	2.46E-03

• Transient T_i simulation for PFC stage

Review: Bottom-Side Cooling per Package

• Each packaging corresponding different thermal solution (Case1 to Case5).

Simulation Results of T_i @ 25 W Power Loss

• TOLL and SOIC-22L packaging have the same heat-dissipation capability.

R_{th} Comparison (Bottom side cooling)

Case 1	Solder + DBC + 0.12mm Gap- Filler	3.5 - 3 - 2.5 -	Conditions: • Same die • Bottom-si • 25 W loss	size de cooling device per device	y and the second se	D2PACK	C22L TOLL CCPACK
Case 2	0.12 mm Gap-Filler +DBC + 0.12 mm Gap-Filler	0) 412 2 — 1.5 —					PSOP-30L
Case 3	0.8 mm Gap-Filler		Case 1_Rth	Case 2_Rth	Case 3_Rth	Case 4_Rth	Case 5_Rth
		PSOP-30L	1.48	1.88	2.0	2.87	1.93
ase 4	0.203 mm Sil-Pad	SOIC-22L	1.44	1.91	2.6	2.87	
	2 oz-Cu. 150 um dielectric laver.	D2PACK	1.9 1.35	2.25 1.66	2.9 2.28	3.18 2.52	
Case 5	3 mm-Al5052H32			Different	thermal treatment m	ethods	

- TOLL and SOIC-22L packaging have the same heat dissipation capability
- PSOP-30L has the best heat capability but larger PCB area

3-in-1 Bi-Directional OBC + DC-DC

- Bi-Directional 6.6kW OBC/3kW DC-DC combo
- Optimized design with 650 V GaN and 1200 V SiC

AC-DC + DC-AC + DC-DC

Navitas System Design Center Accelerates Customer Revenue

Volume (L)

Weight (kg)

Competitor A Competitor B

Customer using Navitas

Competitor A

Competitor B

Customer using Navitas

- Navitas' Shanghai EV System Design Center:
 - Optimized Magnetic designs, higher F_{SW}
 - Optimized system and component thermal design
- Achieves:
 - Higher efficiency
 - Higher power density
 - Lower weight
 - Faster time-to-market

3.6L

6.5kg

2.46L

5.5kg

3.8L

7kg

- GaNFast power ICs and GeneSiC MOSFETs enable high frequency, high efficiency, higher power density
- Small die size and package size bring thermal challenges for high-power applications
- Copper inlay technology is an effective method for bottom-side cooling
- Packaging types are reviewed, and thermal designs analyzed
- Results show that DBC heat insulation technology is the best strategy
- NVTS roadmap includes TOLL and more package types for different high-power applications

2022中国电力电子与能量转换大会 暨中国电源学会第二十五届学术年会及展览会 2022 China Power Electronics and Energy Conversion Congress & The 25th China Power Supply Society Conference and Exhibition

"GaNFast™ and GeneSiC™: Twin Engines Drive the Future of High-Power Applications"

Minli.Jia, Zhen.Zhou, Fisher Xu, Hao.Sun

© Navitas Semiconductor, November 4th-7th 2022 Contact: <u>ir@navitassemi.com</u> Note^Qdisclaimers: Information is as of the date specified only.

Navitas

Energy • Efficiency • Sustainability

∾ Navitas ØGeneSiC Power