

©GeneSiC[™] Power Devices

Markets and Technology

In applications from 20 W to 20 MW, and with device voltages from 650 V to 6.5 kV, GeneSiC silicon carbide (SiC) MOSFETs and Schottky MPS™ diodes drive high-speed, high-efficiency power conversion across diverse markets including EV, industrial automation, solar, wind, grid, motor drives and defense. High-volume, high-quality shipments ensure application performance, reliability and uptime availability.

Trench-assisted planar gate: No-compromise technology

SiC MOSFETs offer superior conductivity and switching performance compared to silicon (Si) due to their 'wide bandgap' characteristics and high electric-field strength. However, traditional designs using legacy planar or trench techniques must compromise between manufacturability, performance, and/or reliability.

GeneSiC's patented trench-assisted planar gate design is a no-compromise, next-generation solution; high-yield manufacturing, fast and cool operation, and extended, long-life reliability.

	Planar Source Gate Metal P- Wetl P- Wetl A- Drain	Source Source Proposition No Drift Layer A Drain	© Genesic TM Trench-Assisted Planar Source Gate Metal N-Drift Layer British Region N-Drift Layer
Manufacturability	» Repeatable » High yield » Low cost	» Inconsistent trench etch» Lower yields» High cost	» Repeatable » High yield » Low cost
Performance	 High R_{DS(ON)} / area Slow switching High R_{DS(ON)} / Δ temp 	 » Lower R_{DS(ON)} / area » Faster switching » High R_{DS(ON)} / ∆ temp 	» Lower R _{DS(ON)} / area » Fastest switching » Lowest R _{DS(ON)} / Δ temp
Reliability	» Rugged gate oxide (stable V _{тн})	 Failures due to non-uniform gate oxide Lower short-circuit capability 	 Highest 100% tested avalanche Long short-circuit withstand time Rugged gate oxide (stable V_{TH})

Efficient, cost-effective power conversion relies on a comprehensive understanding of modern circuit topologies and high-speed (frequency) switching techniques. There are two main device factors;

- How well does the MOSFET conduct current (measured in $R_{DS(ON)}$)?
- How efficiently does the device 'switch' (measured by energy loss, or E_{xx})?

For each question, we must understand the answer in both 'hard-switch' and 'soft-switch' topologies, and under tough high-temperature and high-speed conditions. Combined, a high-temperature, high-speed (frequency) figure-of-merit (FoM) is critical for system performance and reliability.

	Resis	tance	Energy Loss		Figure-c (Low numbe	
Supplier	R _{DS(ON)} @ 25°C (mΩ)	R _{DS(ON)} @ 175°C (mΩ)	Ε _{ον} + Ε _{οϝς} (μ)	E _{zvs} (µJ)	Hard-Switching R _{DS} @ 175°C x (E _{ON} +E _{OFF}) (Ω-μJ)	Soft-Switching R _{ps} @ 175°C x E _{zvs} (Ω-μͿ)
©GeneSiC ™	40	57	680	46	38.8	2.6
#2	40	68	680	40	46.2	2.7
#3	40	80	1240	355	99.2	28.4
#4	40	71	700	115	49.7	8.2
#5	45	85	585	36	49.7	3.1

Lowest Power Loss at High Temp, High Speed

Highest Efficiency, Energy Savings
Small Size, Light Weight, Low System Costs!

GeneSiC patented trench-assisted planar-gate technology delivers the lowest $R_{DS(ON)}$ at high temperature and the lowest energy losses at high speeds. This enables unprecedented, industry-leading levels of performance, robustness and quality.

In-circuit, high-speed test

GeneSiC vs. competitor SiC FET

- » 1200 V, 20 mΩ, TO-247-4L
- » Higher drain current
- » Lower conduction losses
- » Cooler operation

GeneSiC vs. competitor SiC FET

- » 1200 V, 40 m Ω , D2PAK in half-bridge
- » 150 kHz switching = ~10x faster than Si IGBT
- » 30% lower FET loss vs. other SiC
- » 25°C cooler operation = 3x longer lifetime

100%-tested avalanche

Highest published capability to handle excess energy in fault condition

*refer to datasheet for EAS rating

Critical in applications like motor drives to withstand unclamped inductive load (UIL) energy dump in situations like motor open-circuit (O.C.)

Long short-circuit withstand time

World-class survival duration in fault condition

Critical to prevent failures like motor short-circuit where the FET faces full voltage (V_{nn}) in ON-state.

High power paralleling

Matching currents (Stable V_{TH})

Competitor products allow threshold voltage to drop under high-voltage, creating risk of turn-on error

GeneSiC packaged and bare-die FETs can be paralleled reliably for high-power applications

Gen 3 'Fast' SiC MOSFETs

GeneSiC's 3rd generation of fast SiC MOSFETs improves switching performance and system efficiency:

- Optimized EMI
- Low V_F and Q_{RR}
- Robust body diode
- 100% avalanche (UIL) tested
- Ultra-low R_{DS(ON)} vs. temperature dependency

Target applications include EV charging, solar inverters, data center and telecom power supplies, and energy storage systems (ESS).

650V Hard-switching Figure of Merit (E_{ON} , E_{OFF})

Hard-switching E_{ON} & E_{OFF} at VDD = 400V, ID = 35A, T_{amb} = 25°C

 $R_{DS(ON)}$ vs. Temperature (Gen 3F 650V, $20m\Omega$ vs Competition)

Measured on production parts at $I_D = 35A$, $V_{GS} = 18V$

4.5kW, 137W/in³, 97% efficiency AI data center PSU

Gen 3 Fast SiC MOSFET: G3F45MT06L (650V, 40mΩ TOLL)

Interleaved CCM TP PFC with G3F SiC MOSFETs & GaNSafe Power ICs

- Up to 137 W/in³ power density
- Exceeds Titanium efficiency (>97%)
- Hold up time: 10ms @4200W
- EMI: Class A with >6dB

TOLL package for high speed, high efficiency, and high-power density systems

- Extremely low package inductance of 2nH
- Small footprint with 30% savings in PCB area compared to D2PAK
- Lower height profile, with 60% lower volume than D2PAK
- Excellent thermal properties, with 9% lower R_{THJC} compared to D2PAK

Widest Range of SiC MOSFETs 650 V - 6.5 kV

V _{BR(DSS)} (V)	$R_{DS(ON)}$ typ. (m Ω) (@15 V_{GS})	$R_{DS(ON)}$ typ. (m Ω) (@18 V_{GS})	$R_{DS(ON)}$ typ. (m Ω) (@20 V_{cs})	TOLL	TO-263-7 (D2PAK-7L)	TO-247-3	TO-247-4	SOT-227	Die
		21		G3F25MT06L ⁽¹⁾	G3F25MT06J ⁽¹⁾		G3F25MT06K ⁽¹⁾		G3F25MT06-CAx
650		29		<u>G3F33MT06L</u> ⁽¹⁾	<u>G3F33MT06J</u> ⁽¹⁾		<u>G3F33MT06K⁽¹⁾</u>		G3F33MT06-CAx
030		42		<u>G3F45MT06L⁽¹⁾</u>	<u>G3F45MT06J</u> ⁽¹⁾	G3F45MT06D ⁽¹⁾	<u>G3F45MT06K⁽¹⁾</u>		G3F45MT06-CAx
		55		<u>G3F60MT06L⁽¹⁾</u>	<u>G3F60MT06J</u> ⁽¹⁾	G3F60MT06D ⁽¹⁾	<u>G3F60MT06K</u> ⁽¹⁾		G3F60MT06-CAx
		18			G3F18MT12J ⁽¹⁾		G3F18MT12K ⁽¹⁾		G3F18MT12-CAx
		20			G3F20MT12J(1)		G3F20MT12K(1)		G3F20MT12-CAx
		25			G3F25MT12J(1)		G3F25MT12K(1)		G3F25MT12-CAx
1200		34			G3F34MT12J ⁽¹⁾		G3F34MT12K(1)		
1200		40			G3F40MT12J ⁽¹⁾		G3F40MT12K(1)		
		65			G3F65MT12J ⁽¹⁾		G3F65MT12K(1)		
		75			G3F75MT12J ⁽¹⁾		G3F75MT12K(1)		
		135			G3F135MT12J(1)				
	20						G3R20MT17K	G3R20MT17N	G3R20MT17-CAx
1700	45					G3R45MT17D	G3R45MT17K		G3R45MT17-CAx
1/00	160				G3R160MT17J	G3R160MT17D			
	450				G3R450MT17J	G3R450MT17D			
7700			50				G2R50MT33K		G2R50MT33-CAx
3300			1000		G2R1000MT33J				
6500									Engineering Samples

Bare Die Metallization - CAx (-CAL Aluminum, -CAU Gold)

⁽¹⁾ Automotive qualified

Typical Circuits

PFC and 3-Phase Motor Drive using 650 V SiC MOSFETs and Diodes

Transformer-less, 3-phase, 3-level NPC, using 1200 V SiC MOSFETs and Diodes

4-quadrant Full-Power Converter using 1700 V SiC MOSFETs

Locomotive Traction Inverters using 3.3 kV & 6.5 kV SiC MOSFETs and Diodes

2-Level Inverter (6.5 kV)

3-Level Inverter (3.3 kV)

Built to the Highest Level of Reliability

High-voltage pioneers

Robust, high-voltage, high-efficiency SiC MOSFETs, critical for reliable, harsh-environment, high-power applications.

Unique, advanced, integrated 6.5 kV technology

- » Double-implanted metal oxide semiconductor (DMOSFET)
- » Monolithically-integrated Junction barrier Schottky (JBS) rectifier
- » Superior high-power performance

Higher efficiency bi-directional performance

- » Temperature independent switching
- » Fast (low switching loss) and cool (low conduction losses)
- » Longer-term reliability
- » Easy-to-parallel for high power (V_™ stability)

Alternative Energy Solar and Wind Inverters

Automotive Electric Vehicles and

Fast Chargers

*Industrial*Power Supply, Traction and Welding

TransportationRail and Ship-board

Power GridHVDC Transmission and FACTS

Aerospace and Defense High Temperature

High power modules & die sales

GeneSiC SiCPAK™ modules and bare-die enable expanded applications ranging from 10s kW to MW in rail, EV, fast charging, industry, solar, wind and energy storage.

GeneSiC SiCPAK™ modules have been designed for superior performance and robustness, while meeting industry-standard footprint with pin-to-pin combability.

- Epoxy-Resin Potting Technology for High Reliability
- Improved Temperature Cycling
 - Improved Power Cycling
- 'Gen3 Fast' SiC MOSFETs with Industry-Leading Current Density (A/mm²)
- Optimized Low-Inductance Design with Industry-Standard Press-Fit Connections with built-in NTC and Pin-to-Pin Compatibility

Part number	Voltage (V)	$R_{DS(ON)}$ per switch @ 18V (m Ω)	Topology	Package	
G3F09MT12FB2(-T)		9	Half-Bridge	G. G. L. V	
G3F17MT12FB2(-T)		17	Hati-bridge	SiCPAK F (33.8mm x 62.8mm)	
G3F18MT12FB4(-T)	4200	18	Full-Bridge	(55.011111 × 62.011111)	
G3F05MT12GB2(-T)	1200	5	Half-Bridge	C:CDAIX C	
G3F09MT12GB4(-T)		9	Full-Bridge	SiCPAK G (56.7mm x 62.8mm)	
G3F09MT12G3T(-T)		9	3L-T-NPC	(5 - 11 - 11 - 11 - 11 - 11 - 11 - 11 -	

*(-T) Thermal Interface Material Option

GeneSiC MOSFET and diode technologies range from 650 V to 6500 V using trench-assisted planar technology, to provide lowest $R_{\text{DS(ON)}}$ positive temp. coefficient to enable highest efficiency at real operating temperatures. Die has been optimized for different bonding and attach styles with various metallizations including aluminum and gold.

650 V MPS™ Diodes

GeneSiC's new 5th-generation 650 V Merged-PiN Schottky (MPS™) diodes integrate a unique PiN-Schottky structure, delivering 'low-built-in Voltage-Biasing' ("low knee") for highest efficiency across all load conditions with superior robustness. Applications include PFC in server/telecom power supplies, industrial motor drives, solar inverters, LCD/LED TVs, and lighting.

Merged-PiN schottky (MPS™) with low-built-in voltage-biasing technology

A novel GeneSiC merged-PiN Schottky design combines the best features from both PiN and Schottky diode structures, producing the lowest forward voltage drop (V_F), high surge-current capability (I_{FSM}), and minimized temperature-independent switching losses. Proprietary thin-chip technology further reduces V_F and improves thermal dissipation for cooler operation.

Superior figure-of-merit (FoM) drives high efficiency

Gen-5 MPS Diodes are ideal in PFC circuits in continuous-current mode (CCM) due to excellent figure of merit, comprising of a low V_F of 1.3 V, minimized capacitive charge (Q_C). In Addition, zero reverse recovery charge improves PFC MOSFET turn-on performance. The result is a cooler, more reliable system.

3 kW Interleaved Boost PFC

٩t	liaht	load.	Τ.	= 25°(. at full	load, T.	= 125°C

Features
Low V _F (1.3 V) conduction losses
Excellent FoM (V _F .Q _C)
100% avalanche (UIL) tested
Exceptional dV/dt ruggedness
Lowest reverse leakage current
Low thermal resistance

Benefits
High system efficiency
Very high frequency operation
Reduced EMI
Superior robustness
Excellent reliability
Reduced cooling requirements

Typical application circuits

Boost (Solar Inverter)	Boost converters are used in Solar inverters to generate a fixed, higher DC voltage. SiC diodes in QFN8x8 and TO-252 offering highest efficiencies for <3 kW microinverters.
CCM PFC	For PFC applications such as continuous-current mode (CCM) that require fastest reverse recovery to minimize switching losses and increase system efficiency, the TO-220-2 offer excellent performance with high thermal dissipation.
Interleaved PFC	The TO-247-3 package offers great flexibility for higher power density and BOM reduction in applications like the interleaved power factor correction (PFC) that shares a common cathode between two diodes.

SiC Schottky MPS™ Diodes

Merged-PIN Schottky (MPS) Diodes combine two beneficial features from the PIN and Schottky diode. The PIN sustains excessive surge currents with low leakage, while the Schottky element offers low forward-voltage drop and fast-switching characteristics. Target applications include PFC, Boost, and high-voltage, higher-power motor drives.

			•	7, 0	EEEEEE				Power	
V _{RRM} (V)	I _F (A)	DO-214	PQFN 88	TO-252-2	TO-263-7 (D2PAK-7L)	TO-220-2	TO-247-2	TO-247-3	SOT-227	Bare Die
	1	GB01SLT06-214								
	4		GE04MPS06Q	GE04MPS06E		GE04MPS06A				
	6		GE06MPS06Q	GE06MPS06E		GE06MPS06A				
	8		GE08MPS06Q	GE08MPS06E		GE08MPS06A				
	10		GE10MPS06Q	GE10MPS06E		GE10MPS06A				
	12		GE12MPS06Q	GE12MPS06E		GE12MPS06A				
	16							GE2X8MPS06D		
650	20							GE2X10MPS06D		
	24							GE2X12MPS06D		
	30				GD30MPS06J	GD30MPS06A	GD30MPS06H			
	60						GD60MPS06H	GD2X30MPS06D	GD2X30MPS06N	
	100								GD2X100MPS06N	
	120								GD2X60MPS06N	
	200								GD2X100MPS06N	
	300								GD2X150MPS06N	
	1	GB01SLT12-214								
	2	GB02SLT12-214		GD02MPS12E						
	10			GD10MPS12E		GD10MPS12A	GD10MPS12H			GD10MPS12-CAx
	20					GD20MPS12A	GD20MPS12H	GD2X10MPS12D		GD20MPS12-CAx
1200	30				GD30MPS12J		GD30MPS12H			GD30MPS12-CAx
1200	40							GD2X20MPS12D		
	50						GD50MPS12H			GD50MPS12-CAx
	60							GD2X30MPS12D	GD2X30MPS12N	
	100								GD2X50MPS12N	GD100MPS12-CAx
	200								GD2X100MPS12N	
	5				GD05MPS17J		GD05MPS17H			
	10						GD10MPS17H			
	15						GD15MPS17H			
1700	25						GD25MPS17H			
1700	50								GD2X25MPS17N	
	60						GD60MPS17H			
	75									GD75MPS17-CAx
	150								GD2X75MPS17N	
3300	5			GC05MPS33J						
			ļ							

Engineering Samples

Electrify Our World™

In May 2022, Navitas announced that it was the world's first semiconductor company to achieve CarbonNeutral®-company certification, another milestone towards Navitas' mission to "Electrify Our World" and to help Navitas' customers achieve their own sustainability goals.

Silicon Carbide technology enables CO₂ reduction by increasing system efficiency and through 'dematerialization' – using less case material, heatsink, PCBs, etc. vs. legacy silicon IGBTs.

Electrify Our World™

Renewables Fossil Fuels 80% Direct Use Renewables Renewables But a finite of the company o

Every GeneSiC MOSFET shipped saves over 40 kg CO,

Each KATEK coolcept fleX Steca solar inverter uses 16x GeneSiC G3R75MT12J SiC MOSFETs per 4.6 kW unit. The 1,200 V, 75 m Ω -rated devices are used in a two-level converter, with bi-directional boost converters and an H4-topology for AC voltage output. Increased switching frequency shrinks the size and weight.

"Next-generation GeneSiC technology has enabled a major step in system performance without compromising our high engineering standards, especially regarding EMI," said Dr. Peter Grabs, KATEK's Director of Innovation, Research and Development. "Navitas' excellent quality – with zero failures – and consistent, short lead-time delivery are critical success factors as we expand production into new markets."

Exide's high frequency chargers convert 220 V AC power to a battery-level voltage between 24 and 80 V for lead-acid and lithium-ion battery-powered industrial vehicles. The 7 kW module uses GeneSiC G3R60MT07D (750 V) MOSFETs and GD10MPS12A (1,200 V) MPS Schottky diodes, with frequency-optimized architecture. The same platform can be upgraded to 10 kW, with 4 modules in parallel to provide 40 kW of reliable fast-charging power.

"Exide Technologies delivers complete, carefully controlled fast-charging with close system monitoring for critical material-handling equipment, running 24/7," said Dr. Dominik Margraf, Director Product Management Motion at Exide Technologies. "Navitas' GeneSiC technology is easy-to-use, with excellent support, increased system efficiency, and cooler operation."

Contact your local distributor or sales rep to discover the power of GeneSiC technology!

- Samples available immediately with short volume-production lead times
- Broadest silicon carbide portfolio over 140 products in mass production (from 650 V to 6.5 kV)

Sales & Distribution Support

Global / Online Partners	Contact Info
Arrow Electronics	www.arrow.com
Digi-Key Electronics	www.digikey.com
Mouser Electronics	www.mouser.com
Newark Farnell element 14	www.newark.com

US Partners	Contact Info		
Richardson Electronics	www.rellpower.com		
NAC Semiconductor	www.nacsemi.com		
Master Electronics	www.masterelectronics.com		
Verical	www.verical.com		
electro sonic	www.e-sonic.com		

European Partners	Contact Info
Avnet Silica	www.avnet.com
Dacpol SP. Z O. O	www.dacpol.eu
empa:::electronics	www.empa.com
alfatec	www.alfatec.de
TME Elecronic Components	www.tme.com
Compomill Nordic Components	www.compomill.com
Boran Technologies Ltd.	www.boran.co.il
Iberica Semiconductores	www.ibersp.com

Region	Asia-Pac Partners	Contact Info
China	GaNSemi	www.gansemi.cn
China	Skynoon	
China	Sunlord	www.sunlordinc.com
Taiwan	Alltec	www.alltech.com
Korea	Melbrin	www.melbrin.com
Korea	Sonion	www.sonion.com
Japan	SemiSolution Supply	www.semisolution-s.com
Japan	Chip1Stop	www.chip1stop.com
SE Asia	ExcelPoint	www.excelpoint.com
India	JP Electronic Devices	www.jpedindia.com

November 2024. Navitas, GeneSiC, and the Navitas logo are trademarks or registered trademarks of Navitas Semiconductor and subsidiaries.

Navitas Semiconductor 3520 Challenger Street, Torrance, CA 90503, USA Navitas +1 844-654-2642, info@navitassemi.com www.navitassemi.com

Find us on:

