High Power, High Voltage, High Speed: GaN and SiC Electrify Our World™

Navitas Electrify Our World™

Navitas

eSic

Copyright Navitas Semiconductor, 2023

Pure-Play, Next-Gen Power Semiconductors

Statistical data is based on Navitas estimates of GaN-based systems compared to Si-based estimates in the 2024-2025 timeframe. Based on Navitas measurements of select GaN-based mobile wall chargers compared to Si-based chargers with similar output power, incl.
 2019 study of 65W fast chargers, 2022 customer statement re 2.7 kW data center AC-DC

2. Navitas estimates based on customer feedback as the expected system cost saving overtime as of April 2023

Right Time, Right Technology, Right Company

1. Estimated based on Power SiC/GaN Compound Semiconductor Market Monitor, Q1 2023, Yole Intelligence

2. Granted or pending

Target Markets: \$22B/year

1. Navitas company estimates, potential market opportunity in 2026 is \$22B+ for GaN and SiC, replacing certain of the silicon market share. Axes not to scale

Navitas: Growing Faster than the Market

- Q3 Financial Report (November 9th, 2023)
 - Revenue \$22M (+115% yr/yr, +22% Q/Q)
 - Margin 42.1% (+3.7% yr/yr, +0.6% Q/Q)
 - Cash \$177M, no debt.
 - >\$1B customer pipeline
- Guidance:
 - Q4 \$25-\$26M, gross margin 42.5% (+/-0.3%)
 - 2023 Revenue = 2x 2022
 - 2024: "Grow at least 50%"

The Fossil Fuel Challenge

Electrify Our World[™]

GaNSafeTM: Ultimate Performance, Reliability Navitas

GaNSafe[™]: World's Safest GaN Power Semiconductor

Navitas

GåNSafe™ Accelerating AI / Edge Computing

- Data center AC-DC 'silver box' (12V)
- CRPS185 form factor ٠

ĜàNSafe"

scret GaN

Hold-up Time (ms)

33% fewer power components

GaN Drives Efficiency: Motor Drive Example

Conduction Losses

Navitas 400W 3-phase Platform for Inverter-Motor Integration

Navitas

- 2x higher frequency
- >60% fewer components, PCB area
- 95-97% efficiency
- 80% energy savings vs Silicon BLDC
- 90% energy savings vs AC motors
- High reliability
- Fast time to market

65W charger: GaN vs Si Dematerialization

Relative Climate Impacts, 65W Charger

12

Every GaNFast Power IC Shipped Saves Over 4 kg CO₂

Navitas

GeneSiC: SiC MOSFETs

GeneSiC: Trench-Assisted Planar Gate SiC

	Planar	Trench	GeneSiC	
	Source Gate Metal P+ Well JFET Region N- Drift Layer	Source P-Well N- Drift Layer Loren	Source Gate Metal P+ Source P- Well N- Drift layer N-Drift layer Technol	npromise ology
Manufacturability	 » Repeatable » High yield » Low cost 	 Inconsistent trench etch Lower yields High cost 	 » Repeatable » High yield » Low cost 	\checkmark
Performance	 » High R_{DS(ON)} / area » Slow switching » High R_{DS(ON)} / ∆ temp 	 » Lower R_{DS(ON)} / area » Faster switching » High R_{DS(ON)} / Δ temp 	 » Lower R_{DS(ON)} / area » Fastest switching » Lowest R_{DS(ON)} / Δ temp 	
Reliability	» Rugged gate oxide (stable V _{тн})	 Failures due to non-uniform gate oxide Lower short-circuit capability 	 » Highest 100% tested avalanche » Long short-circuit withstand time » Rugged gate oxide (stable V_{тн}) 	

Faster, Cooler, Longer Lifetime

Test Board

- GeneSiC trench-assisted planar FET vs. Competitor SiC FET
 - 1,200 V, 40 mΩ, D2pak in half-bridge
 - Represents 7.5 kW DC-DC converter (e.g. data center, EV)
 - 150 kHz switching = ~10x faster than Si IGBT example
- >80% energy savings (>3,000 kWh/yr) vs Si IGBTs -25°C cooler = 3x longer life vs other SiC (reduced maintenance / repair costs)

China to add 120-140 GW of solar in 2023 (+40% vs 2022)

Expect 2x capacity, produce 1,200 GW by wind + solar by 2025 <u>5 years ahead</u> of target (2030)

"Solar will soon become the most economical form of electricity in China, surpassing hydropower to become the largest non-fossil energy source by the end of this year"⁽¹⁾

(1) "Solar to jump into renewable energy driving seat at home and abroad, as China's capacity just keeps expanding, analysts say", South China Morning Post, 26 May, 2023

Navitas

GaN and SiC for Solar / Energy Storage

25°C cooler with GeneSiC

Customers in Development, Production

(1) Navitas est. 6.2 kW residential installation with silicon inverter at 97.5%, GaN at 98.5% efficiency. (2) Market estimates for 2030, based on DNV and Navitas analysis. (3) Per Q1'23 earnings report

Copyright Navitas Semiconductor, 2023

Accelerating Adoption: EV

Copyright Navitas Semiconductor, 2023 mile range. (3) Represent select potential, engaged customers. Logos do not indicate binding long-term agreements.

GàNSafe[™] Delivers Highest Power Density

Combination 6.6 kW OBC + 3 kW DC-DC:

- AC Input: 90~265 V_{AC} up to 32 A
- **DC Output:** 470~860 V_{DC} , full load
- Power Output: 6.6 kW charging, 6.0 kVA discharging
- Efficiency: > 95% @ Full Load
- **DC-DC Output:** $9^{-16} V_{DC}$

Mechanical:

- **Dimensions:** 210 x 192 x 61mm (< 2.5 litre)
- Cooling: -40 to +65°C (Cold Plate)
- Communication: IP 67, CAN Bus interface

Copyright Navitas Semiconductor, 2023

Accelerating Charging

Navitas

HV Long-Haul Trucks Need HV SiC

- In 2022:
 - Small share ~60k in 5 million/year
 - 110 new models
- COP27:
 - 30% ZEV sales by 2030
 - 100% by 2040
- "Megawatt Charging System"
- SAE J3271
- Up to 3.75 MW
- 1,250 V cable

DC Fast-Charger	Passenger / LDV	HDV J3721	HDV J3721	
Specifications		(non-cooled)	(actively-cooled)	
Power (max, kW)	350	440	3,750	
Voltage (max, V)	920	1,250	1,250	
Current (max, A)	500	350	3,000	
Vehicle Battery (nom, V)	400 / 800	800, 1200	800, 1200	
SiC Device Voltage (nom, V)	750 / 1,200	1,200 / 1,700	1,700	

HV Bus = HV SiC

HV bus:

- Low I²R conduction losses
- High combined motorinverter efficiency
- Small size electric drive for same power levels
- No AC-DC conversion losses
- *GeneSiC range* 650V-6,500V

1000 mΩ —				★ 1000 mΩ	+ 1000 mΩ	
500 m0 —						
500 mm			★-350 mΩ	★450 mΩ		★-300 mΩ
	. 120 0		*-160 mΩ	★ −160 mΩ	. 100-0	
100 mΩ —	★ 120 mΩ				*= 120 mΩ	
	★-90 mΩ		★ −75 mΩ	★-75 mΩ		
	★ −60 mΩ	★ −60 mΩ				
50 mΩ —	★- 45 mΩ		★ 40 mΩ	* -45 mΩ	* 50 mΩ	★ 50 mΩ
	★-25 m0		★-30 mΩ			
			★ −20 mΩ	★ −20 mΩ		
	× −15 mΩ				× −15 mΩ	
10 mΩ —		★ 12 mΩ ★ 10 mΩ	★ 12 mΩ ★ 10 mΩ			
	650V	750V	1200V	1700V	3300V	6500V

(1) Oak Ridge Nat. Lab. & National Renewable Energy Lab. Medium- and Heavy-Duty Vehicle Electrification: An Assessment of Technology and Knowledge Gaps (December 2019) ORNL/SPR-2020/7

Every GeneSiC MOSFET Shipped Saves Over 25 kg CO₂ Navitas

Accelerating Sustainability

Navitas

May '22 World's first semiconductor company CarbonNeutral® certified

>50 GWh energy savings Saved >225 metric tons of CO₂

GaN + SiC save 6 Gton / year by 2050 Every OGeneSic FET

saves 25 kg CO₂

August '22 First 100,000 tons CO₂ saved (Over <u>200</u>,000 as of November 2023)

October '22 Recognized for industry-leading sustainability reporting

Discover more

Wechat

at

Weibo

Navitas Electrify Our World™

https://navitassemi.com/zh/