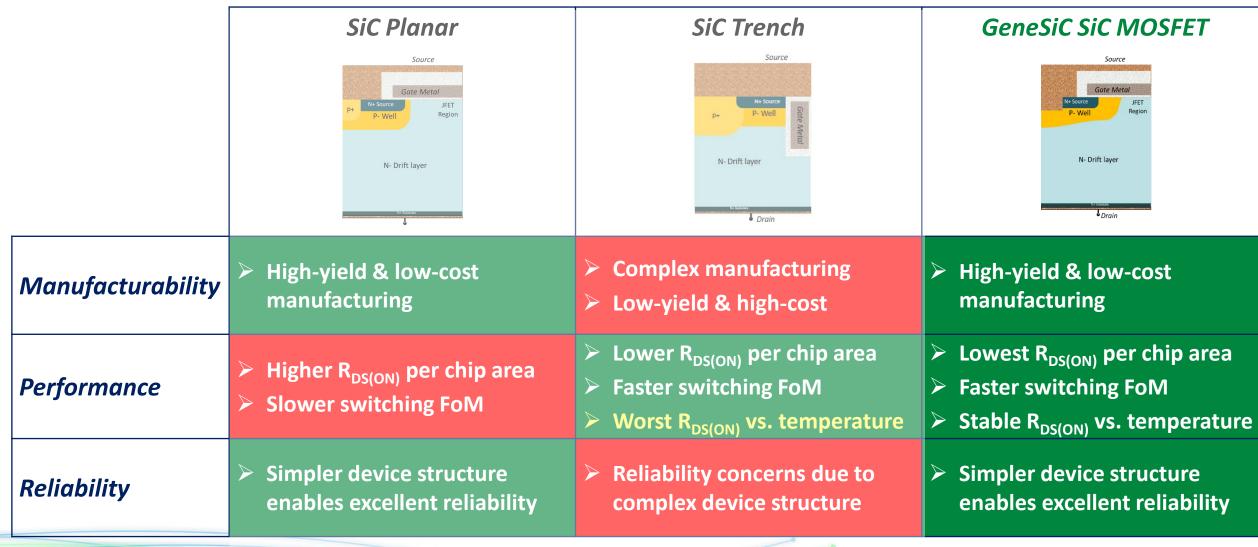
High-Speed Gen3 Fast GeneSiC MOSFETs Deliver Best-In-Class Performance

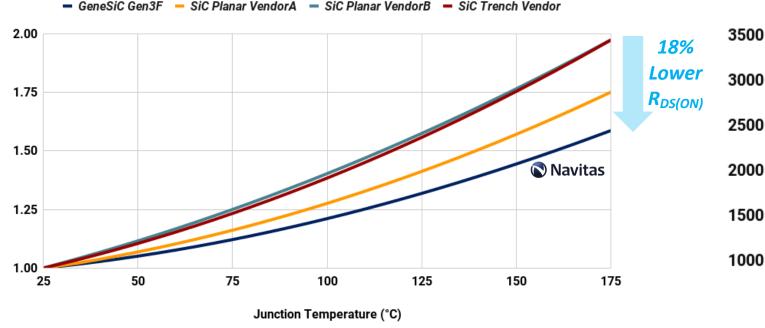
Dr. Ranbir Singh EVP of SiC Business, Navitas Semiconductor


Bodo's Wide Bandgap **Event 2023**

December 13 Silicon Carbide / SiC

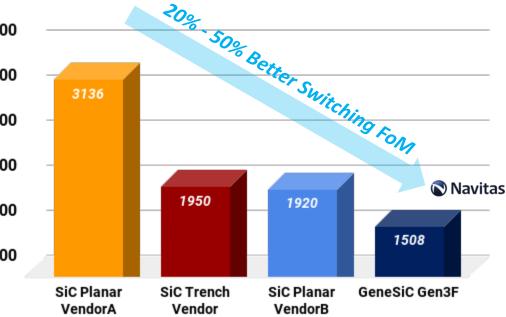
No Compromise SiC MOSFET Technology

Trench-Assisted Planar Gate



Trench-gate advantage is NOT true in SiC

Gen3 Fast SiC MOSFETs for Industry-Leading Performance 🔊 Navitas


Static Performance (1200V)

R_{DS(ON)} vs. T_j (normalized)

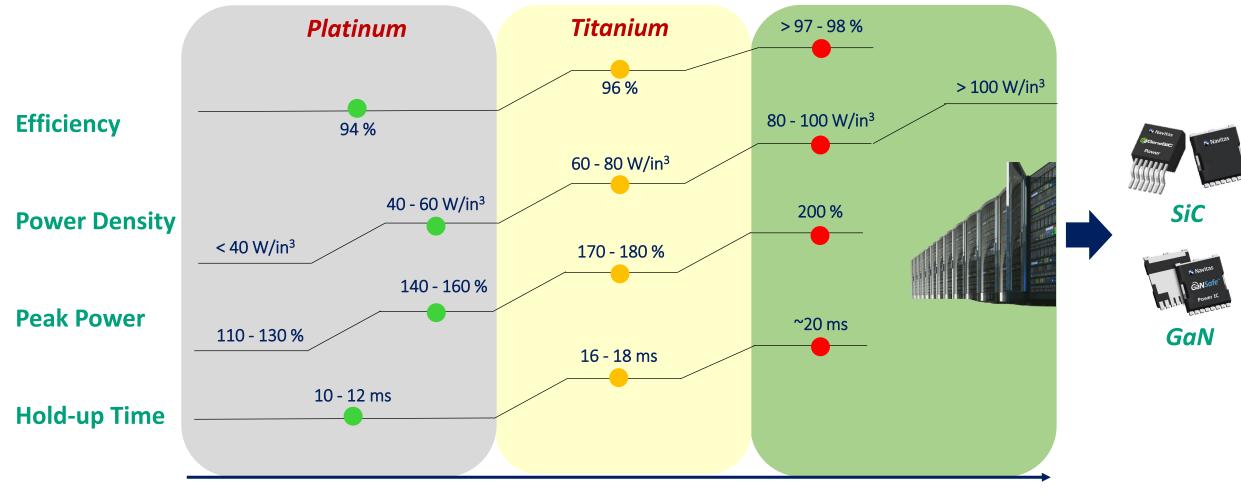
Dynamic Performance (1200V)

R_{DS(ON)} x E_{OSS} at 125°C (mΩ-µJ)

Thermal Camera

Gen3 Fast offers 10% -18% lower R_{DS(ON)} at hot temperature (175°C)

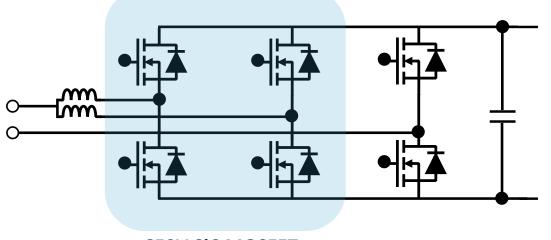
- 20% 50% better R_{ON} x E_{OSS} switching figure-of-merit
- Enables lower losses and cooler operation
 - ✓ Better system efficiency and longer lifetime



GeneSiC

98°C

Demanding Applications Require Advanced Technology 🔊 🔊 Navitas


Data-Center PSU Trend Towards High Efficiency and High Power Density

SiC & GaN are key semiconductor technologies to meet server PSU development

650V SiC MOSFETs in CCM TP PFC of Data-Center PSU

Interleaved CCM Totem-Pole PFC (> 2.7kW CRPS)

650V SiC MOSFETs

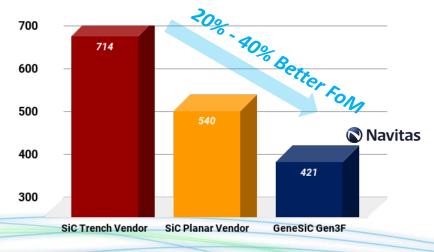
Key MOSFET parameters for CCM TP PFC

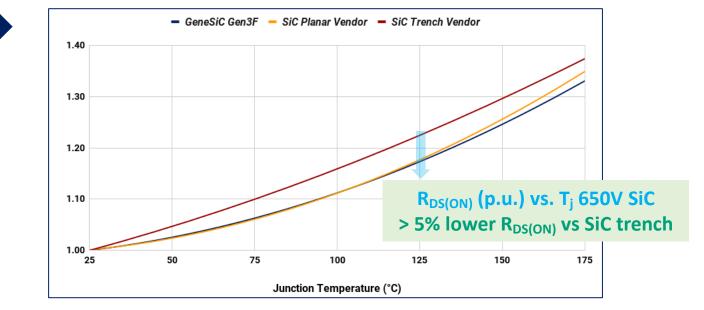
- Low RDS(ON) at all temperatures
- $\Box \quad Low E_{OSS}, Q_{RR}, Q_{G}$
- Low body diode V_F and low C_{OSS,tr}
- □ High, stable V_{GS(TH)} and high C_{ISS}/C_{RSS}

- **TO-LL (Transistor Outline Lead-Less) package**
- **30% savings in PCB area than TO-263-7** (D2PAK-7L)
- **2.30mm profile, 60% less volume than TO-263-7**
- Low package inductance 2nH
- □ Kelvin-source packages for lowest switching losses
- **100% avalanche (UIL) tested SiC MOSFETs**

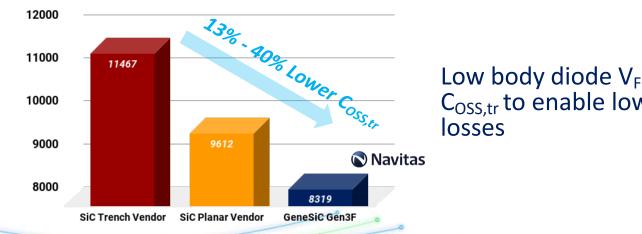
Navitas

Figure of Merits (FoM) for CCM Totem-Pole PFC

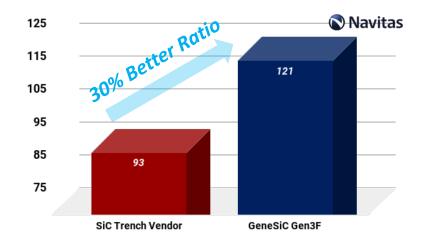



 \Box Lowest R_{DS(ON)} at all temperatures ✓ Lowest conduction losses


Best-in-class E_{OSS}, Q_{RR} and Q_G ✓ Lowest switching losses


Hard-Switching FoM (650V)

 $R_{DS(ON)} \times E_{OSS}$ at 125°C (m Ω -µJ)


Low body diode V_F and low Coss.tr to enable low dead-time

Optimized for Robust Fast-Switching Performance

Navitas

Switching Robustness (650V)

C_{iss} / C_{rss} Ratio

□ Potential V_{GS} overshoot can be estimated by "capacitance ratio"

$$\frac{C_{GS}}{C_{GD}} = \frac{C_{iss}}{C_{rss}} - 1 \quad \Longrightarrow \quad \Delta V_{GS} = \frac{C_{GD}}{C_{GS}} \Delta V_{DS}$$

□ Higher C_{iss} / C_{rss} ratio (larger C_{GS} in comparison to C_{GD}) is preferred

1.5

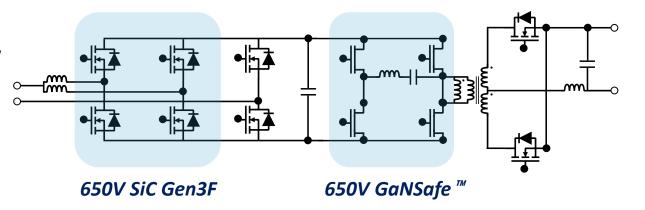
Gen3 Fast" MOSFETs optimized for "capacitance ratio"
 ~30% better "capacitance ratio" as compared to SiC trench

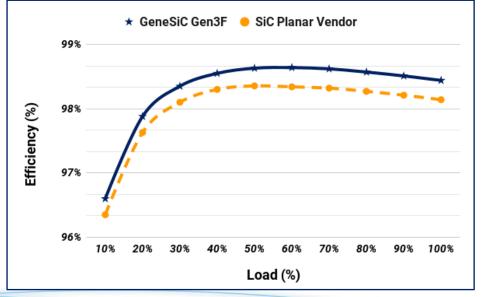
Although SiC trench MOSFETs offer higher V_{TH} (~3.5V) they are more susceptible to overshoots, and poor R_{DS(ON)} vs. T_j and R_{DS(ON)} * E_{OSS} FOMs make them "less efficient"

Gen3 Fast" designed for robust fast-switching performance!

□ 2.2V minimum V_{TH} vs. 1.8V minimum V_{TH} specification from other planar SiC MOSFET vendors. Potential for "0V" turn-off with low-inductance package (TO-LL) and low-inductance PCB design

Best-in-Class V_{TH} (Planar SiC) 2.5 2.3 2.2V Minimum V_{TH} Navitas 2.0 1.8 1.8


GeneSiC Gen3F


NVTS 3.2kW Data-Center PSU in CRPS185 Form Factor

Platform Features

- Supports 2.7kW, 3kW and 3.2kW
 Up to 98 W/in³ power density
 Titanium+ efficiency
 - **n u** 96.3 % @ 50 % load
 - □ > 96 % @20 % 60 % load

230V AC input; including EMI loss and auxiliary power loss

3.2kW interleaved CCM TP PFC

- Better than titanium efficiency (titanium requires 96%) measured using GeneSiC Gen3F 650V SiC MOSFETs (45mΩ TO-LL)
- Excellent performance at high input current, high temperature conditions, as Gen3F's conduction loss is the lowest

Navitas

Accelerating Time-to-Market : Unique System Design Centers

Navitas

Copyright Navitas Semiconductor, 2023

9

Broadest⁽¹⁾ SiC MOSFET Portfolio

	650V	750V	1200V	1700V	2200V	3300V	6500V	Constanting Sicration
50 mΩ — 10 mΩ —		± 10 mΩ	★ 12 mΩ ★ 10 mΩ					
	★ −15 mΩ		★-20 mΩ ★-17 mΩ	× −20 mΩ	∗ −20 mΩ			
	★ −25 mΩ		★ 25 mΩ					s s s
	★ −33 mΩ		★ 40 mΩ ★ 34 mΩ	*−45 mΩ		★ 50 mΩ	★ 50 mΩ	0
	★-45 mΩ							/// ////
50 m 0	× −60 mΩ		★-75 mΩ ★-64 mΩ	∗ −75 mΩ		+ 50 m0		
100 mΩ –			★ −135 mΩ			∗ −120 mΩ		
				∗ −160 mΩ				Power Modules
			★-295 mΩ				★-300 mΩ	✓ Bare Chips
500 mΩ —				★ 450 mΩ				(Dava China
								✓ Discrete
000 mΩ –				+ 1000 m	0 + 1000 m	Ω ★ 1000 mΩ		✓ 60+ SiC MOSFET Product

Note (1): based on GeneSiC voltage range of production released SiC MOSFETs compared to all publicly identified voltage ranges of other SiC suppliers.