

A New World Needs EV Trucks

- Passenger EV adoption increasing:
 - •USA: passenger EV forecast for 2030 up $>2x^{(1)}$
- Long-haul EV trucking: early days
 - In 2022, 60k medium- and heavy-duty BEV trucks sold (~1% of total), 110 BEV truck models introduced
- US and 26 other countries signed COP27 MoU:
 - •30% ZEV sales by 2030 and 100% by 2040

MAN Truck & Bus and ABB E-mobility, exclusive cooperation agreement. Jan '24 (2)

¹⁾ Boston Consulting Group (BCG) forecasts, 21% in 2018, 53% in 2022 forecast

²⁾ https://press.mantruckandbus.com/corporate/megawatt-charging-and-more-man-and-abb--e-mobility-announce-rd-cooperation/

Roadside Charging: Many HV SiC Opportunities

https://www.nrel.gov/transportation/medium-heavy-duty-vehicle-charging.html

Nikola BEV vs H2 Fuel Cell

Spec	Nikola BEV ⁽¹⁾	Nikola Fuel-Cell ⁽²⁾	
Max Speed (mph)	70	70	
Range (miles)	Up to 330	Up to 500	
Battery (kWh)	733	164	
Fuel Cell Power Module (kWh)	-	200	
Continuous Power (kW)	480	400	
Instantaneous Power (kW)	797	575	
Charging / Refueling Time (mins)	90 (@350 kW)	20	
	<< @ 1MW?	20	

¹⁾ https://nikolamotor.com/the-nikola-tre-bev-reinventing-short-haul-transportation/

²⁾ https://nikolamotor.com/tre-fcev/

Hydrogen Fuel-cell: Still More Power, Still High Voltage

[&]quot;A Review of Fuel Cell Powertrains for Long-Haul Heavy-Duty Vehicles: Technology, Hydrogen, Energy and Thermal Management Solutions", Pardhi, et al, Energies 2022, 15(24), 9557; https://doi.org/10.3390/en15249557

Full BEV: More Power, High Voltage

"Megawatt Charging System": SAE J3271^(1,2), up to 3.75 MW via 1,250 V cable

DC Fast-Charger Specifications	Passenger / LDV	HDV J3721 (non-cooled)	HDV J3721 (actively-cooled)
Power (max, kW)	350	440	3,750
Voltage (max, V)	920	1,250	1,250
Current (max, A)	500	350	3,000
Vehicle Battery (nom, V)	400 / 800	800, 1200	800, 1200
SiC Device Voltage (nom, V)	750 / 1,200	1,200 / 1,700	1,700

¹⁾ SAE J3271 specification, https://standardsworks.sae.org/standards-committees/j3271-megawatt-charging-system-electric-vehicles-tf

²⁾ https://www.anl.gov/reference/faq-charging-for-heavyduty-electric-trucks

The Planar Problem

Reliability

» Rugged gate oxide (stable V_{TH})

The Trouble With Trench

Best of Both: Trench-Assisted Planar Gate

Highest Performance, Voltage Range & Ruggedness

Broad SiC Portfolio (650 V \rightarrow 6,500 V)

Trench-Assisted Planar Gate Performance

Static Performance (1200 V)

On-Resistance vs. Temperature

Switching Performance (1200 V)

 R_{ON} x E_{OSS} at 125°C (m Ω - μ J)

- ☐ *Tr-assisted planar gate* offers **10% -18% lower on-resistance** at 175°C
- □ 20% 50% better switching figure-of-merit
- Enables lower losses and cooler operation
 - ✓ Better system efficiency
 - ✓ Longer lifetime

Faster, Cooler, Longer Lifetime

- Trench-assisted planar FET vs. Competitor SiC FET
 - 1,200 V, 40 m Ω , D2pak in half-bridge
 - Represents 7.5 kW DC-DC converter (e.g. data center, EV)
 - 150 kHz switching = ~10x faster than Si IGBT example
- >80% energy savings (>3,000 kWh/yr) vs <u>Si IGBTs</u>
 -25°C cooler = 3x longer life vs other SiC (reduced maintenance / repair costs)

Test Board

Test Circuit (1-phase of 3-phase motor drive)

Switching Waveforms (40 A pk-pk, 20 A turn-off)

Competitor SiC 45 W system loss

T-A PG 40 W system loss -30% SiC loss

Every T-A PG MOSFET Saves Over 25 kg CO₂

From EV Trucks to EVTOLs: Same Challenges, Same SiC Solutions

Battery Voltages: Archer 800V⁽¹⁾, Lilium 900V⁽²⁾ Joby 1000V⁽³⁾

Require SiC: 1,200V, 1,700V

- 1) https://archer.com/technologies
- 2) https://lilium.com/newsroom-detail/first-high-voltage-electrical-harnesses-roll-off-the-line-for-the-all-electric-lilium-jet
- 3) https://joby-site.cdn.prismic.io/joby-site/5f82ea34-645e-4468-8e3f-14a16e298941 Joby-Charging-GEACS-final.pdf

Discover more at navitassemi.com

