

Navitas Delivers Al Server Power: GaN & SiC Hybrid 4.5 kW

Kevin Wang Sr Director Sales and Taiwan Country Manager

#### 21st March 2024

Copyright Navitas Semiconductor, 2024

# **Navitas** Electrify Our World™



# 1 VEARS



#### Deloitte.

Fastest 75

**Revenue Growth** 



World's Most

Protected GaN Power



Top 50 Most

Successful Small

Company





**HQ** Opening Torrance, CA



Navitas Founded



World's First

GaN Power IC

Prototype

World's First

100,000,000 GaN

Shipments

Mass Production of GaNFast Chips

VDD Tech Acquisition Digital Isolators

**Control your Power** 

**Elevation Acquisition** 

**High-speed Silicon** 

Controllers



\$1B+ IPO

World's First Autonomous GaN Power IC

Gaw

Power I



### 2014 2016 2018 2019 2021 2022 2023 2024

20-Year



**"Breaking Speed Limits** with GaN Power ICs" APEC Keynote



**Best Practices** Award

World's First World's First GaN Sustainability Report Warranty World's First 100,000 tons CO, Saved



GeneSiC

Acquisition

Leading-Edge SiC

Deloitte.

Fastest 75

CARBON

World's First Revenue Growth Semi Company

ERTIFIED

lectronic HARDWARE BEST IN CES 2020

















### Pure-Play, Next-Gen Power Semiconductors



1. Statistical data is based on Navitas estimates of GaN-based systems compared to Si-based estimates in the 2024-2025 timeframe. Based on Navitas measurements of select GaN-based mobile wall chargers compared to Si-based chargers with similar output power, incl. 2019 study of 65W fast chargers, 2022 customer statement re 2.7 kW data center AC-DC

2. Navitas estimates based on customer feedback as the expected system cost saving overtime as of April 2023

### \$22B+ GaN & SiC 'Pure-Play' Opportunity



#### Notes: Axes not to scale

Based on internal company estimates, Navitas believes that the potential market opportunity in 2026 is \$22B+ for GaN and SiC, replacing certain of the silicon market share-

Per Yole Developpment, 2024-2024 estimated market revenue

### The Efficiency Challenge: "Titanium Plus"

| 80 Plus test type        | Icon                   | 115 V internal non-redundant |     |     | 230 V internal redundant |     |     |     | 230 V EU internal non-redundant |     |     | edundant |      |                                                               |
|--------------------------|------------------------|------------------------------|-----|-----|--------------------------|-----|-----|-----|---------------------------------|-----|-----|----------|------|---------------------------------------------------------------|
| Percentage of rated load |                        | 10%                          | 20% | 50% | 100%                     | 10% | 20% | 50% | 100%                            | 10% | 20% | 50%      | 100% |                                                               |
| 80 Plus Gold             | 80<br>PLUS<br>GOLD     |                              | 87% | 90% | 87%                      |     | 88% | 92% | 88%                             |     | 90% | 92%      | 89%  |                                                               |
| 80 Plus Platinum         | 80<br>PLUS<br>PLATINUM |                              | 90% | 92% | 89%                      |     | 90% | 94% | 91%                             |     | 92% | 94%      | 90%  |                                                               |
| 80 Plus Titanium         | 80<br>PLUS<br>TITANIUM | 90%                          | 92% | 94% | 90%                      | 90% | 94% | 96% | 91%                             | 90% | 94% | 96%      | 94%  | European Union: <u>'Directive</u><br>2009/125/EC, 2019 Annex' |

### The Power Challenge #1: Data Center Power



1. Cerebras white paper / website

2. TD Cowen, per "AI to drive data center investments", LightReading.com, 4-26-23

3. European Union 'Directive 2009/125/EC, 2019 Annex', power supplies must be >96% efficiency peak, as of 1-1-23

Copyright Navitas Semiconductor, 2023

### The Power Challenge #2: NVIDIA AI GPUs





Navitas

Train GPT-MoE-1.8T in 90 Days

Blackwell GB200 NVL72 2000 GPUs | 4MW

Blackwell processes 30x more tokens/s and only ¼ the power of Grace Hopper but still 2,000W per GPU and

>100kW per rack

Images from NVIDIA GTC2024

### **The Power Solution: Navitas Al Roadmap**

# **Al Power Roadmap** 3,200W - 4,500W - 10,000W

# **Navitas**

**Navitas** 

**Titanium Plus** 

# **GaNSafe**<sup>™</sup>

High-Speed Short-Circuit Protection

The World's Safest GaN

# **Navitas**



Robust Operation

800 V

max

Easy Cooling

### GaNSafe Reliability: Double-Pulse Test

#### Navitas

#### Double-pulse test: 400 V, 30 A, R<sub>SERIES</sub> = 11 mΩ







**Discrete GaN** 42 mΩ max

#### Significant spikes Excessive turn-ON ringing 250 V undershoot







GaNSafe™ 45 mΩ max (NV6513) No voltage spikes No ringing No undershoot



### GaN Discrete → GaN<u>Safe</u>



**Drain Voltage** 

TELEDYNE LECRO





- Company X GaN discrete
- 650 V, 25 mΩ typ
- Fails <u>short</u>



• Navitas GaNSafe

**PWM** Input

Drain Current

- 650 V, 25 mΩ max (NV6514)
- Survives short-circuit



### **Discrete GaN: Short-Circuit Failure**



#### • Repeatable issue





Up to 6.5 kV Largest range of SiC FETs & diodes (650 V to 6.5 kV)



#### Fast Switching

=%

Cool. Fast.

Rugged.

Highest efficiency hard-switch, soft-switch (Lowest  $E_{ON}$ ,  $E_{OFF}$ ,  $E_{ZVS}$  losses)



#### 100%-Tested Robust Avalanche

Highest published capability to handle excess energy in fault condition

#### Cool Operation

T

Lowest R<sub>DS(ON)</sub> at high temperature (25% lower than industry typical)



Long Short-Circuit Withstand Time World-class survival duration in fault condition



High-Power Paralleling

Matching currents (Stable  $V_{TH}$ )

#### **Trench-Assisted Planar Gate – No Compromise**



|                   | Planar                                                                                                                     | Trench                                                                                                                        | GeneSiC                                                                                                                          |  |  |
|-------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--|--|
|                   | Source<br>Gate Metal<br>P+ Well JFET<br>Region<br>N- Drift Layer                                                           | Source<br>P- Weit<br>P- Weit<br>N- Drift Layer<br>Loroin                                                                      | Gate Metal<br>Source<br>Gate Metal<br>FET<br>P- Well<br>Region<br>N- Drift Layer<br>ADrain                                       |  |  |
| Manufacturability | <ul> <li>» Repeatable</li> <li>» High yield</li> <li>» Low cost</li> </ul>                                                 | <ul> <li>» Inconsistent trench etch</li> <li>» Lower yields</li> <li>» High cost</li> </ul>                                   | <ul> <li>» Repeatable</li> <li>» High yield</li> <li>» Low cost</li> </ul>                                                       |  |  |
| Performance       | <ul> <li>» High R<sub>DS(ON)</sub> / area</li> <li>» Slow switching</li> <li>» High R<sub>DS(ON)</sub> / ∆ temp</li> </ul> | <ul> <li>» Lower R<sub>DS(ON)</sub> / area</li> <li>» Faster switching</li> <li>» High R<sub>DS(ON)</sub> / Δ temp</li> </ul> | <ul> <li>» Lower R<sub>DS(ON)</sub> / area</li> <li>» Fastest switching</li> <li>» Lowest R<sub>DS(ON)</sub> / ∆ temp</li> </ul> |  |  |
| Reliability       | » Rugged gate oxide (stable V <sub>тн</sub> )                                                                              | <ul> <li>Failures due to non-uniform<br/>gate oxide</li> <li>Lower short-circuit capability</li> </ul>                        | » Highest 100% tested avalanche<br>» Long short-circuit withstand time<br>» Rugged gate oxide (stable V <sub>тн</sub> )          |  |  |

### Faster, Cooler, Longer Lifetime





**Test Board** 

- GeneSiC trench-assisted planar FET vs. Competitor SiC FET
  - 1,200 V, 40 mΩ, D2pak in half-bridge
  - Represents 7.5 kW DC-DC converter (e.g. data center, EV)
  - 150 kHz switching = ~10x faster than Si IGBT example
- >80% energy savings (>3,000 kWh/yr) vs <u>Si IGBTs</u> -25°C cooler = 3x longer life vs other SiC (reduced maintenance / repair costs)



#### Faster Time-to-Market: Unique System Design Centers



#### **NVTS 3.2 kW Sets New Density, Efficiency Levels** Navitas



### NVTS 4.5 kW Al Server Power

**Navitas** 

- Data center AC-DC 54 V AI/GPU Server PSU
- CRPS185 form factor





| Company | A Company            | Navitas               |
|---------|----------------------|-----------------------|
| Power   | 3,200 W              | 4,500 W               |
| DC-DC   | <150 kHz Si/SiC      | 300 kHz GaN           |
| PD      | 98 W/in <sup>3</sup> | 138 W/in <sup>3</sup> |
| Eff     | ~96.3%               | >97%                  |

Navitas +40% Power Density



#### ensity 💦 🔊 Navitas<sup>.</sup>

#### >97% Efficiency

Efficiency @230 Vac



#### Navitas<sup>•</sup> +20% Hold-up

Hold up time (ms)



### **Accelerating Sustainability**







Navitas Delivers Al Server Power: GaN & SiC Hybrid 4.5 kW

Kevin Wang Sr Director Sales and Taiwan Country Manager

#### 21st March 2024

Copyright Navitas Semiconductor, 2024

# **Navitas** Electrify Our World™

