* NV6113_COMPLETE *$ **************************************************************************** * * NV6113 LTspice Model * **************************************************************************** * * This simulation model uses typical parameter values and it is based on * a behavioral model. This model is supplied "as is" and the author * provides no warranties, either expressed or implied, with respect * to the operation and accuracy of the model within a customer circuit * or system. * **************************************************************************** * * NAVITAS SEMICONDUCTOR * Part Nr: NV6113 * Author: Akos Hodany * Date: 11/10/2018 * Model Type: LTspice * Model Version: v1.0 * * Revision notes: * * v1.0 - Initial version (source: NV6115 v1.4) * * Notes on compatibility: * This model is intentionally developed to work with different Spice simulator programs. However, due to differences between Spice variants and derivatives, compatibility issues may occur and call for minor changes in the subcircuit syntax. * Please contact NAVITAS SEMICONDUCTOR for further assistance. * **************************************************************************** .SUBCKT NV6113 VCC PWM VDD DZ D S R1 N003 N001 5k C1 N002 N003 1n C2 N002 N001 100p R2 N002 VDD 300 G_B1 VCC DZ VALUE {max(500u*tanh((v(vcc,s)-v(dz,s)))*(0.65-0.35*tanh((v(dz,s)-5.6)*5)),0)} R4 N001 VDD 10k XU1 DZ N001 VCC N002 S S NV611x_OPA R7 VCC DZ 300k XU2 G PWM S VDD NV6113_DRV C3 VDD S 10p C5 PWM S 1p XU3 D G S NV6113_FET C4 DZ S 10p R3 VCC S 25k .ENDS nv6113 *$ .SUBCKT NV6113_FET D G S .PARAM Ipk=10.55 TCIPK=-0.000995261 Vpk0=2 dVpk=2 vpkalpha=0.7 P10=1 P1s=0.55 P1alpha=1 Alpha=0.35 TCA=0 TCVPK=+0.004 TCP1S=-0.00381818 VTHX=1.4 TCVTH=+0.00271 NORMTEMP=25 RD0=170m RG=370m TCRD=0.011 TCP10=-0.005 IDRo1=2.065 TCIDRc1=-0.00409091 Rs=1m IDRc1=2.2 IDRc2=1.5 C1=6 C2=0.6 C3=0.3 C4=79.11011 C5=13.0775 C6=32.59872 C7=44.4 C8=60 G_G3 D2 D0 VALUE { V(D2,D0)/max(V(RDT, 0),1n) } E_ABM21 ILK 0 VALUE { (abs(V(DTEMP))*V(DTEMP)/10+1)*2.93m*max(abs(V(D0,S0))*V(D0,S0)/42250,0) } R_R101 0 N153327 10Meg E_ABM12 SUBTH 0 VALUE { tanh(3*V(G0,S0))*(0.5*(1+tanh(2.2*(V(G0,S0)-V(VTHT)))))**2 } G_G12 0 N165388 VALUE { 1n/1p*I(E_E102)/(V(cgd)+1m) } C_C3 0 N164635 1n E_ABM106 IDRVX 0 VALUE { V(IDRc1T)/(4*{IDRc2})+{IDRo1} } E_ABM22 CGS 0 VALUE { {C8}+ 0.5*({C7}- {C8})*(1+tanh(-1.5*(V(G0,S)-1.7))) } R_R2 D1 D3 0.1m E_ABM24 CDS 0 VALUE { {C5} + 0.5*({C6}- {C5})*(1+tanh(-0.02*(V(D3,S)-120))) + 0.5*({C4}- {C6})*(1+tanh(-0.1*(V(D3,S)-50))) } C_C4 0 N165388 1n E_ABM104 IDRC1T 0 VALUE { {IDRc1}*(1+V(DTEMP)*{TCIDRc1}) } R_R105 0 N164635 10Meg E_ABM2 DTEMP 0 VALUE { V(VTEMP)-{NORMTEMP} } L_L1 D D3 100p E_ABM101 IDRI1 0 VALUE { max(0,(-V(D1,S0)-{IDRo1})*V(IDRc1T)) } E_ABM9 PSI 0 VALUE { V(P1M)*V(VOVDRV) } R_R106 0 N165388 10Meg E_ABM14 ALPHAT 0 VALUE { {Alpha}*(1+V(DTEMP)*{TCA}) } R_R103 N164557 G0 100u E_ABM23 CGD 0 VALUE { {C3} + 0.5*({C2}- {C3})*(1+tanh(-0.01*(V(D3,G0)-70))) + 0.5*({C1}- {C2})*(1+tanh(-0.1*(V(D3,G0)-20))) } G_G1 D0 S0 VALUE { V(ID, 0) } E_ABM5 P10T 0 VALUE { {P10}*(1+V(DTEMP)*{TCP10}) } E_E100 DX S VALUE { V(N153327, 0) } E_ABM7 DP1T 0 VALUE { {P1S}*(1+V(DTEMP)*{TCP1S})-V(P10T) } E_ABM8 P1M 0 VALUE { V(P10T)+V(dP1T)*tanh({P1alpha}*abs(V(D0,S0))) } R_R6 D0 S0 150Meg E_ABM11 VTHT 0 VALUE { {VTHX}*(1+V(DTEMP)*{TCVTH}) } R_R104 N165310 G0 100u C_C2 0 N153327 1n E_ABM13 IPKT 0 VALUE { {IPK}*(1+V(DTEMP)*{TCIPK}) } R_R9 D0 D2 100 E_ABM15 ID 0 VALUE { V(IPKT)*(1+tanh(V(PSI)))*tanh(V(AlphaT)*V(D0,S0))*V(SUBTH) } E_ABM105 IDRO2 0 VALUE { -V(IDRc1T)/(4*{IDRc2})+{IDRo1} } E_E101 N164557 S VALUE { V(N164635, 0) } R_R4 0 S 100Meg E_ABM102 IDRI2 0 VALUE { (V(Vdsat)-V(IDRo2))*(V(Vdsat)-V(IDRo2))*{IDRc2} } R_R1 D3 D2 0.1m R_R3 S S0 {Rs} R_R5 G0 G {RG} E_E102 N165310 D3 VALUE { V(N165388, 0) } E_ABM1 VTEMP 0 VALUE { {TEMP} } E_ABM3 VPK 0 VALUE { {Vpk0}+({dVpk}*tanh( {vpkalpha}*abs(V(D0,S0))))*(1+V(DTEMP)*{TCVPK}) } R_R102 DX D3 100u E_ABM16 RDT 0 VALUE { {RD0}*(1+V(DTEMP)*{TCRD}) } R_R8 D D3 1 G_G100 D1 S0 VALUE { -max(V(IDRI1),V(IDRI2)) } G_G6 D0 S0 VALUE { max(V(ILK, 0),0)*1u } G_G10 0 N153327 VALUE { 1n/1p*I(E_E100)/(V(cds)+1m) } E_ABM4 VOVDRV 0 VALUE { V(G0,S0)-V(VPK) } G_G11 0 N164635 VALUE { 1n/1p*I(E_E101)/(V(cgs)+1m) } E_ABM103 VDSAT 0 VALUE { min(max(-V(D1,S0),V(IDRo2)),V(IDRvx)) } .ENDS NV6113_FET *$ .SUBCKT NV6113_DRV GDRV PWM SK VDD .PARAM IQDDL=270u UVLOHYS=0.6V UVLOREF=3.4V NORMTEMP=25 ILSMAX=350m GMVC=0.1 GMTC=-0.001 IQDDTC=0.01 VITH=2.18V VITHTC=0.002 RDSONLS=2.5 VIHYS=0.5V IQDDH=360u VITHMIN=1.9V VITHMAX=2.8V RDSONHS=8.75 IHSMAX=100m TD=5n X_U3 N119184 N09875 N16008 N124777 SK COMP_HYST_VAR2 PARAMS: VHIGH=8 VLOW=1m VHYS={UVLOHYS} C_C3 SK N119184 10p R_R6 N119184 VDD 33k D_D3 N124436 N119184 DBODY R_R7 N124436 VDD 1k C_C2 SK EN 1p V_V2 VREFCT SK 1 D_D2 SK OUT DBODY E_ABM2 CMULT 0 VALUE { (1+({GMVC}*(V(vdd,SK)-7)))*(1+{GMTC}*(V(VTEMP)-{NORMTEMP})) } G_ABMI1 VDD SK VALUE { max(tanh(max(V(VDD,SK),0))*(IQDDL+(IQDDH-IQDDL)*(1+tanh(5*V(PWM,SK)-5))/2)*(1+{IQDDTC}*(V(VTEMP)-{NORMTEMP})), 0) } V_V1 N09875 SK {UVLOREF} R_R2 EN N16008 1k R_R1 PWMC PWMCT 1.5k R_R5 OUT GDRV 1m G_G2 OUT SK VALUE { {ILSMAX}*tanh(1/{ILSMAX}/{RDSONLS}*V(out,SK))*0.5*(1-tanh(1.5*((V(PRE, SK)-2))))*V(CMULT) } R_R4 SK OUT 10Meg G_G1 VDD OUT VALUE { {IHSMAX}*tanh(1/{IHSMAX}/{RDSONHS}*(V(vdd,SK)-V(OUT,SK)))*(tanh(1.5*(V(PRE, SK)-3))+1)/2*V(CMULT) } E_E1 N22346 SK VALUE { min(max({VITHMIN},(1+{VITHTC}*((V(VTEMP))-{NORMTEMP}))*{VITH}), {VITHMAX}) } X_U2 PWMCT VREFCT PRE EN SK COMP_HYST_VAR2 PARAMS: VHIGH=8 VLOW=0 VHYS=100m X_U1 PWM N22346 PWMC N124777 SK COMP_HYST_VAR2 PARAMS: VHIGH=2 VLOW=0 VHYS={VIHYS} C_C1 SK PWMCT {TD/1000} R_R3 SK VDD 10Meg E_ABM1 VTEMP 0 VALUE { {TEMP} } D_D1 OUT VDD DBODY V_V3 N124777 SK 5 .ENDS NV6113_DRV *$ .SUBCKT NV611x_OPA INP INM VDD OUT VSS GNDA params: R0=1e5 C0=100n Ro=10 R1 GNDA q {R0} R2 GNDA inp 10Meg R3 GNDA inm 10Meg C1 q GNDA {C0} G1 GNDA q VALUE {V(inp,GNDA)-V(inm,GNDA)} E1 N001 GNDA VALUE {max(min(v(q,GNDA),v(vdd,GNDA)),v(vss,GNDA))} R4 N001 out {Ro} G2 vdd GNDA VALUE {max(V(N001,out)/{Ro},0)} G3 GNDA vss VALUE {max(-V(N001,out)/{Ro},0)} D1 q Vclp DBODY D2 Vclm q DBODY E2 Vclp GNDA VALUE {V(VDD,GNDA)} E3 GNDA Vclm VALUE {V(GNDA,VSS)} .ENDS NV611x_OPA *$ .SUBCKT COMP_HYST_VAR2 NINV INV OUT VX VG params: VHIGH=5 VLOW=100m VHYS=50m Rvx VX VG 10Meg Ehl HiL VG Value { min(V(VX,VG),{VHIGH}) } Ell LoL VG Value { min(V(VX,VG),{VLOW}) } EHyst HYST NINV Value { {VHYS}/2*tanh(500*(V(OUT,VG)-(V(HiL,VG)+V(LoL,VG))/2)) } EComp CompOut VG Value { V(LoL,VG) + (V(HiL,VG)-V(LoL,VG))*0.5*(tanh(500*V(HYST,INV))+1) } RO CompOut OUT 100 CO OUT VG 10PF .ENDS COMP_HYST_VAR2 *$ .model DBODY D(Is=30n N=1 Rs=0.1)