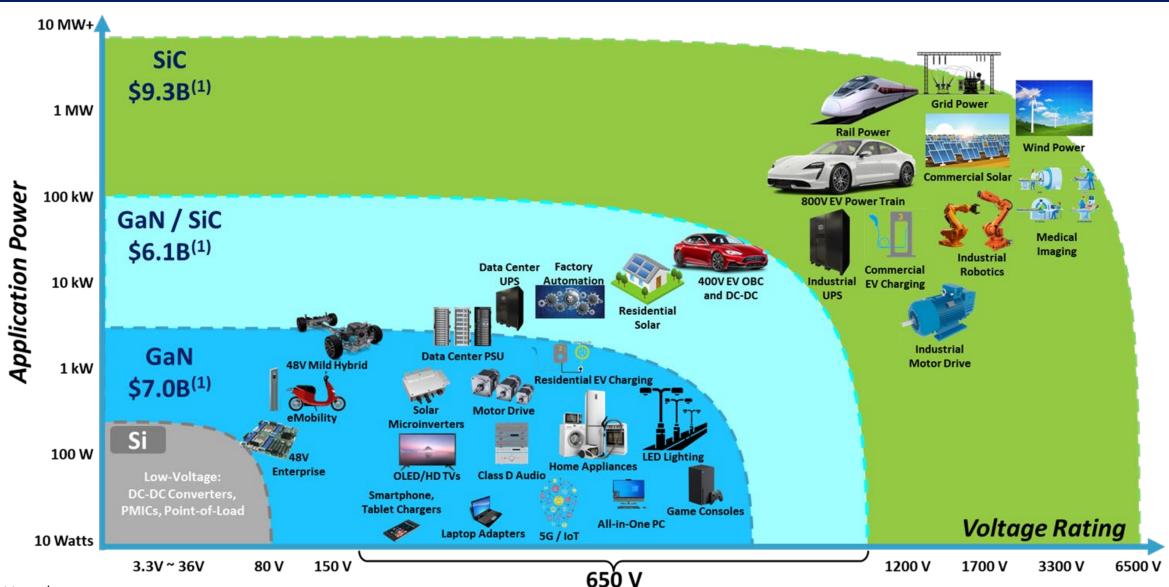


Pure-Play, High-Speed GaNFast and GeneSiC:

The Leading Edge of Next-Gen Power Semiconductors

Stephen Oliver VP Corp. Mktg. & IR

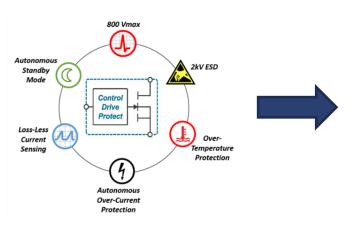

© Navitas Semiconductor 2023 Contact: ir@navitassemi.com

August 15th, 2022: Navitas Semiconductor, industry-leader in gallium nitride power ICs, acquired GeneSiC Semiconductor, silicon carbide pioneer and industry leader

\$22B 'Pure-Play' Market Opportunity (1)

Axes not to scale

1) 2026E potential, Source: Yole, DNV, IRENA, Fraunhofer ISE, IHS, Cisco, Hyperscale, Peer annual reports, Wall Street research.


© Navitas Semiconductor 2023

The GaN Revolution: Critical Integration

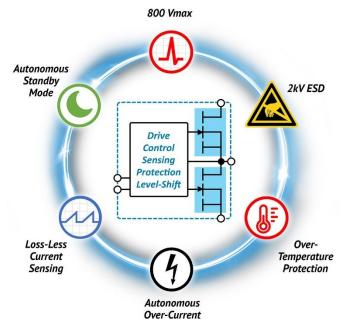
Silicon FET

Discrete GaN

- Old, slow
- High Q
- High Coss
- F_{sw} < 100 kHz
- External gate drive
- dV/dt sensitivity
- Layout sensitivity
- ESD sensitivity
- Unknown reliability
- Unknown robustness

✓ Internal Gate

Drive


Protect

- ✓ Integrated Gate Drive
- √ dV/dt Immunity
- ✓ Layout Insensitive
- √ 2 kV ESD rating
- ✓ Proven Reliability
- ✓ Proven Robustness

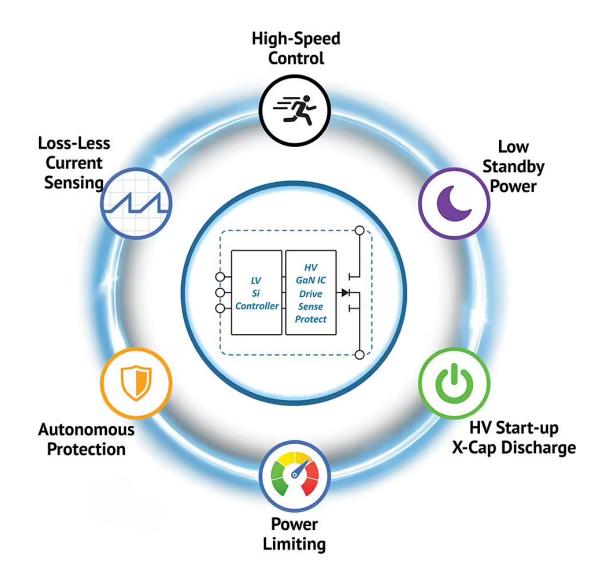
GaNFast plus:

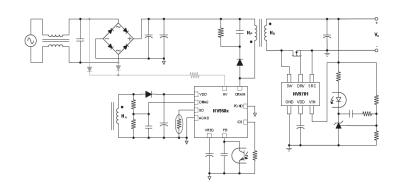
- ✓ Autonomous Standby
- ✓ Autonomous Protection
- ✓ Loss-less Current Sensing
- ✓ High Precision
- √ High Efficiency

GàNSense Half-Bridge 1 MHz

GaNSense plus:

Protection


- √ Highest integration
- √ integrated HS and LS FETs
- ✓ Integrated level-shift isolation
- ✓ integrated boot-strap
- **Shoot-through protection**
- **Enlarged cooling pads**
- √ Fastest switching
- ✓ Highest efficiency



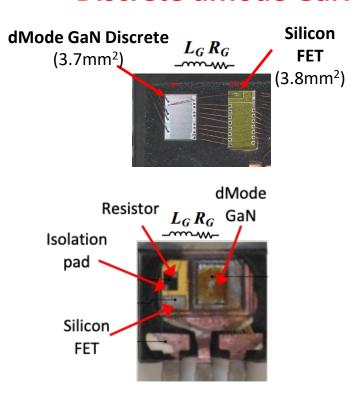
1.5x Power Density than Discrete GaN

Typical 65W Application Circuit

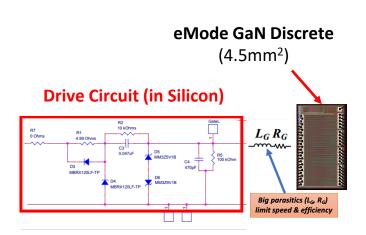
Discrete GaN

	Discrete GaN	GaNSense Control IC	
Power (W)	65	65	
Frequency (kHz)	100	125	25% faster
Peak Efficiency (%)	90.3	94.3	4% higher
Dimension: x,y, z (mm)	33 x 33 x 60	50 x 30 x 20	2x smaller
Power Density (W/CC) cased	1.03	1.50	1.5x higher

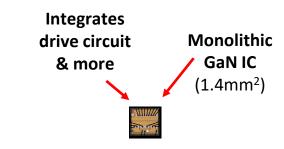
More Efficient, Smaller than GaN Discrete MCMs



Feature	Competitor A	Competitor B	Navitas	Navitas Benefit
Max Frequency (kHz)	175	150	225	Higher Efficiency, Power Density
Package	PQFN 6x8	InSOP 10x14	PQFN 5x6	
HV Startup	Internal	Internal	Internal	
Lossless Current Sensing	No	Yes	Yes	
V _{DD} Range (V)	7.9 - 40	4 – 6	6.2 - 80	
External V _{DD} Regulator	Boost	Linear	Not Required	
External Components	+11	+18	+9	
PCB Footprint (mm²)	85	90	50	
Thermal Pad	Yes	No	Yes	
Standby Loss (mW)	50	<30	<20	
Hotspot	Yes	No	No	Higher Reliability
V _{ps} (cont./trans.)	650 / 750	650 / 750	700 / 800	


Navitas GaN IC: Smaller, Faster, Robust

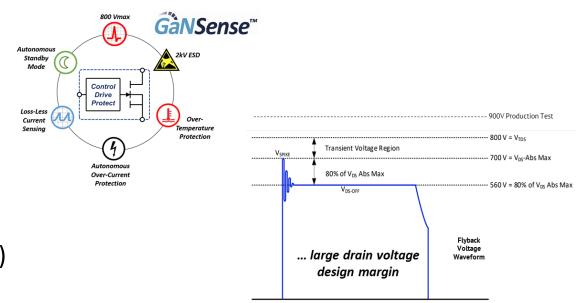
Discrete dMode GaN


Discrete eMode GaN

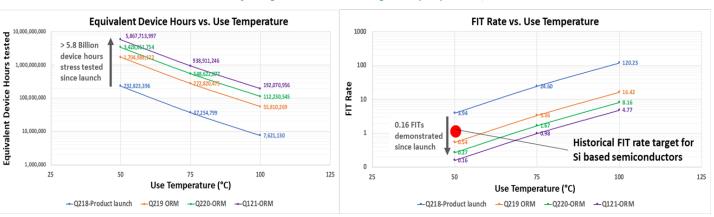
Extra Si driver circuit

- Extra Si FET + other
 - Cost & comployity
 - Cost & complexity
 - Adds parasitics & delay
 - Limits speed & efficiency

Navitas eMode GaN IC

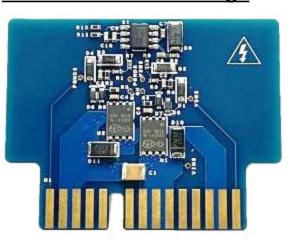


- No extra circuits
- No parasitics & delay
- Drive & power matched in GaN
- Integrated features, functions
- Highest speed & efficiency
- Highest robustness and reliability
- Simple customer design
- 50-80% smaller chip


Foundational Reliability

- *Design* for Reliability
 - Integrated drive, sensing and protection
 - Component reliability, and system reliability
- *Testing* for Reliability:
 - Proprietary production test methods
 - GaN ICs tested 400% (multi-temp, high-frequency)
- *Characterization* for Reliability
 - Exhaustive, proactive, and unique Navitas reliability program
 - 5.8 B equivalent device hours tested⁽¹⁾
 - Proprietary, highly-accelerated Op-Life, plus JEDEC, plus ELFR monitoring
 - Founder member of JEDEC JC70.1

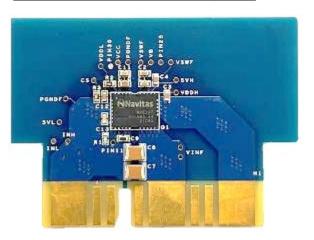
Reliability Statistics Calculated for High Line condition using HTOL (ZVS) results



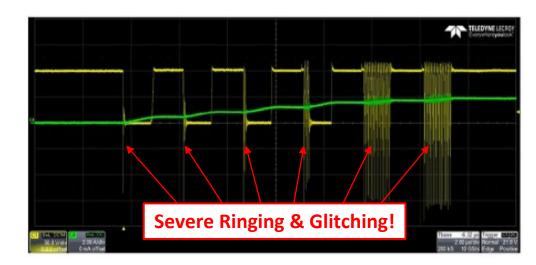
GaN Integration Drives Speed, Efficiency, Stability Navitas

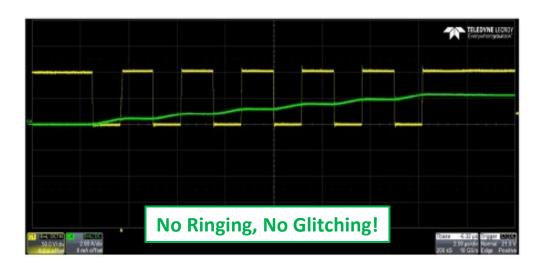
Discrete GaN Half-Bridge

- 33 components
- 250 mm² footprint
- External HB driver HVIC
- External HV bootstrap
- 2x HV bypass diodes
- 2x external gate drives
- Exposed gates



61% fewer components


64% smaller footprint


Complete integration

GaNSense Half-Bridge IC

- √ 13 components
- ✓ 90 mm² footprint
- ✓ Level shifters
- √ Bootstrap
- ✓ Gate drivers
- √ No exposed gates

100% Tier 1 Mobile OEMs Adopting Navitas

Tier 1 OEMs

240+

GaN Chargers

Mass Production(1)

250+

GaN Chargers
In Development(1)

Aftermarket Examples

100%

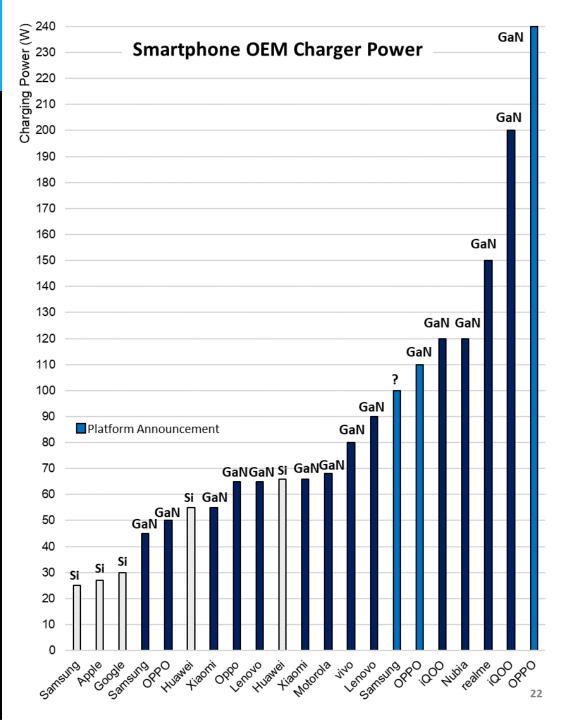
Mobile OEMs Designing With Navitas
GaN ICs

70M+

GaN ICs Shipped⁽²⁾

Now <u>Ultra</u>-Fast Chargers

- Major trend
- New, fast-growth market: \$1B opportunity by 2025⁽¹⁾
- Full charge in <10 mins (200W)
- Increased GaN\$ per charger
- World's highest power density 120W, 150W, 200W, 240W

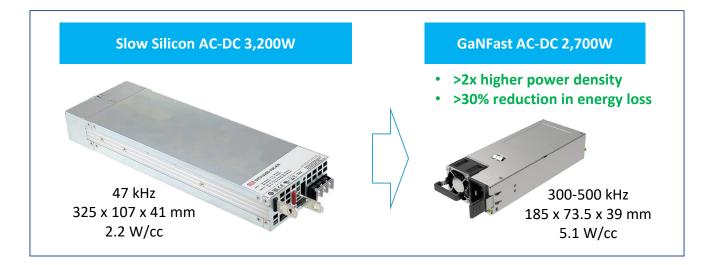


RedMi (Xiaomi) F1 Mercedes 120W

Realme (OPPO) GT Neo 3 150W

iQOO (vivo) 10 Pro, 200W

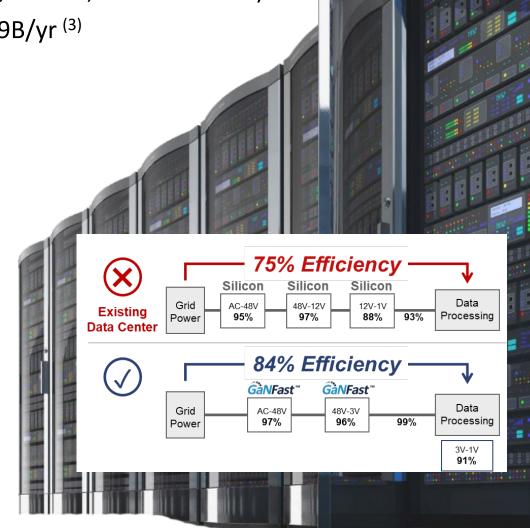
Powering the World's Fastest-Charging Smartphone


GaNFast Exceeds "Titanium", >2x Power Density

• Euro 'Titanium plus' standard from January 1st, 2023⁽¹⁾

• Design Center: 4 platforms, 10 customer projects (1.3 kW, 1.6 kW, 2.7 kW, 3.2 kW CRPS⁽²⁾)

• GaN can reduce electricity use by up to 10%, save >15 TWh or \$1.9B/yr (3)


"GaN is a breakthrough new technology that is enabling dramatic reductions in size, energy savings and power density" "Navitas is an excellent partner with industry-leading GaN ICs"

Robin Cheng, VP R&D

⁽¹⁾ European Union 'Directive 2009/125/EC, 2019 Annex', power supplies must be >96% efficiency peak.

⁽³⁾ Navitas est. based on a) Navitas server/datacom forecast & AAAS data, b) \$0.12/kWhr, c) Si vs. GaN \$/W and d) data-center loading profile. Estimated based on known existing Si© Navitas est. based on a) Navitas server/datacom forecast & AAAS data, b) \$0.12/kWhr, c) Si vs. GaN \$/W and d) data-center loading profile. Estimated based on known existing Si© Navitas est. based on a) Navitas server/datacom forecast & AAAS data, b) \$0.12/kWhr, c) Si vs. GaN \$/W and d) data-center loading profile. Estimated based on known existing Si-

⁽²⁾ CRPS = Common Redundant Power Supply standard, defined by Intel for standardized mechanical form-factors, targets hyper-converged compute, storage and networking eqpt.

Up to 6.5 kV

Largest range of SiC FETs & diodes (650 V to 6.5 kV)

Highest efficiency hard-switch, soft-switch (Lowest E_{ON} , E_{OFF} , E_{TVS} losses)

Rugged.

Lowest R_{DS(ON)} at high temperature (25% lower than industry typical)

100%-Tested **Robust Avalanche**

Highest published capability to handle excess energy in fault condition

High-Power Paralleling

Matching currents (Stable V_{TH})

Long Short-Circuit Withstand Time

World-class survival duration in fault condition

GaN + SiC for Solar & Energy Storage

25°C cooler with GeneSiC

Customers in Development, Production

Navitas Strength & Opportunities

- Solar up 3x 2022-2027, more capacity than natural gas by 2026, coal by 2027
- Inflation Reduction Act: >\$50B to solar, storage and wind
- Bus voltages rising to 1.500V matches GeneSiC 3.300V capability

Market Potential (2)

- Residential Micro >\$1.4B (GaN)
- Residential String >\$1.0B (SiC)
- Commercial String >\$1.0B (SiC)
- >\$1.25B (SiC) (50% attach rate) Energy Storage >\$4.65B Total =

Pure-Play EV: The Largest Opportunity

SK signet

>\$11B/year Opportunity⁽¹⁾

(On-board >\$10B/yr + Roadside >\$1B/yr)

Navitas EV System Design Center

- 5 platforms including 400V, 800V and 6.6-22 kW
- Bi-di charger (2-in-1), bi-di + DC-DC (3-in-1)
- Increasing bus voltages play to GeneSiC 3,300 V strength

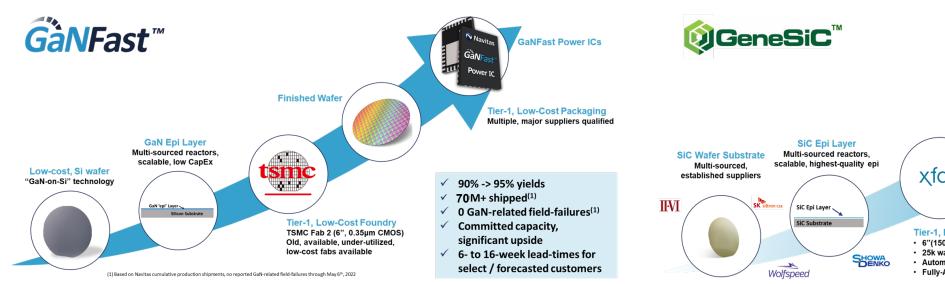
Navitas + Geely Joint EV Design Center

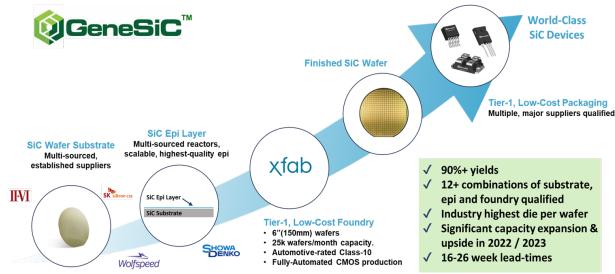
Home Appliance & Industrial

Legacy Si-Based Brush-less DC (BLDC)
Motor & Inverter for Washing Machine
(~80% efficiency)

Navitas 300W 3-phase Platform for Inverter-Motor Integration

- 2x higher frequency
- >60% fewer components, PCB area
- 95-97% efficiency
- 80% energy savings vs Silicon BLDC
- 90% energy savings vs AC motors
- High reliability
- Fast time to market


>\$1.5B/year Opportunity for 50-300W Motors(1)


Inflation Reduction Act: \$9B to upgrade US home appliance efficiencies

(1) Navitas estimate 50-300W motors, including circulators, hydronic pumps, aircon IDU/ODU fans, HVAC, air purifiers, hair dryers, refrigerator compressors, dishwashers, washing machines.

High Capacity, 50% Shorter Lead-times (1)

- Tier-1 foundry partners, excellent manufacturing support
- High yields, low costs, flexible supply chains
- Long-term capacity agreements: GaN up 3x, SiC up 5x starting in 2023
- 50% shorter lead-times than industry typical

75,000,000 Shipped Electrify Our World™

Let's go GaNFast™

Leader in Sustainability: 150,000+ tons CO, Saved! (1)

February '22 First GaN sustainability report based on global standards.

Every GaNFast™ IC
saves
4 kg CO₂

4x-10x lower component CO₂ footprint than silicon

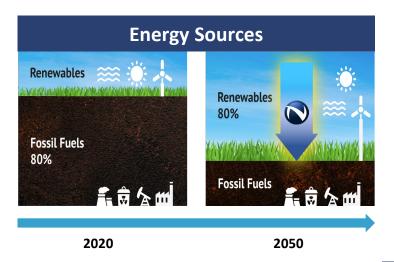
28% lower lifetime CO₂ footprint for chargers / adapters

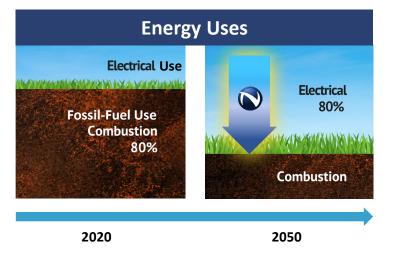
Accelerates transition from ICE to EV by 3 years, saving 20%/yr of road-sector emissions by 2050

GaN + SiC save up to 6 Gton / year by 2050

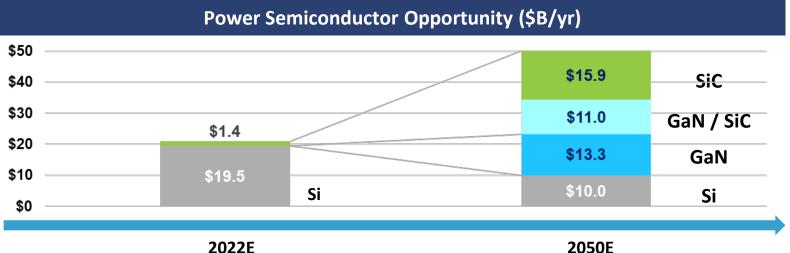
May '22 World's first semiconductor company CarbonNeutral® certified

August '22 First 100,000 tons CO₂ saved




October '22 Recognized for industry-leading sustainability reporting

Mission: Electrify Our World™



Energy sources and uses are being electrified...

...creating a \$40B
GaN + SiC opportunity
by 2050

Fossil-fuel vs renewable ratios adapted from IRENA 2020 "Global Renewables Outlook". Shift required to meet "Transforming Energy Scenario, 9.5 Gton target in 2050", per Paris Agreement's 1.5°C rise. Market opportunity \$ from Yole Développement, 2020 and Navitas analysis.

Pure-Play, High-Speed GaNFast and GeneSiC:

The Leading Edge of Next-Gen Power Semiconductors

Stephen Oliver VP Corp. Mktg. & IR

© Navitas Semiconductor 2023 Contact: ir@navitassemi.com