

Speed Drives Performance

4th IEEE Workshop on Wide Bandgap Power Devices and Applications (WiPDA) Fayetteville, NC, USA. November 9th 2016.

30MHz 40MHz 50MHz 1MHz 10MHz 20MHz 30MHz 40MHz 50MHz 1MHz 10MHz 20MHz 30MHz 40MHz 50MHz 1MHz 10MHz

Gene Sheridan, CEO

gene.sheridan@navitassemi.com

Navitas GaN Power IC Navitas GaN Power

Speed & Efficiency are Key

- Fast power devices have *potential* to enable high-frequency and high efficiency
- Frequency enables small size, lowcost and faster charging
- Efficiency enables energy savings
- With Silicon (or even discrete GaN), you can get one *or* the other
- With GaN power ICs, you get both at the same time with unequaled Speed & Efficiency

World's First AllGaN[™] Power ICs

Proprietary design 15+ pending or issued patents

Proprietary design 8+ pending patents

Up to 40MHz switching, 5x higher density & 20% lower system cost

Navitas

Hi-Speed Devices (V/ns)

HD

B

GaN Power IC: Hi-Speed FET, Drivers & More

- Proprietary AllGaN[™] technology
- Monolithic integration of GaN FET, GaN Driver, GaN Logic
- 650 V eMode
- 20x lower drive loss than silicon (<35 mW at 1 MHz)
- Driver impedance matched to power device
- Very fast (prop delay and turn-on/off of 10-20 ns)
- Zero inductance turn-off loop
- High dV/dt immunity (200 V/ns) with control
- Digital input
- Complete layout flexibility

Fast & Clean High Voltage Transitions

- Prop delays 10-20 ns
 - From PWM input to 10% of FET V_{DS} change
- Turn-on & turn-off times 10-15 ns
- Zero gate loop inductance

Speed & Integration → Eliminate Turn-off Losses

External drivers

- Significant turn-off losses
- Just 1-2 nH of gate loop inductance can cause voltage spikes that create unintended turn-on of the GaN FET
- Adding a gate resistor reduces spikes but slows down the circuit creating additional losses

Integrated GaN drivers (iDrive™)

- Eliminate the problem
- Negligible turn-off losses

GaN Power IC – Fast & Efficient

- 500 V Switching
- No overshoot / spike
- No oscillations
- 'S-curve' transitions
- Zero Loss Turn-on
- Zero Loss Turn-off
- Sync Rectification
- High frequency
- Small, low cost magnetics

320

HOC

340

Hi-Speed Magnetics (mTesla x MHz)

120

100

BL

🔊 Navitas

60

New Magnetics, New Speeds

in IEEE Transactions on Power Electronics, vol. 31, no. 11, pp. 7909-7925, Nov. 2016.

Frequency Drives Size: Transformer (65 W)

Frequency Drives Size: EMI Filter

Conductive frequency range: 150 kHz - 30 MHz

High Frequency \rightarrow Small Size \rightarrow Low Cost

Size Reduction

Navitas

Magnetics & EMI Filters

350

HOC

340

Hi-Speed Systems (MHz → W/in³)

120

100

B

60

-LJ

GaN Power ICs enable Hi-Density Adapters 3x Higher Density with 50% Energy Savings

Navitas

2016: Navitas + On Semiconductor; 2017: Xiucheng Huang, "High Frequency GaN Characterization and Design Considerations," Ph.D Dissertation, Dept. Electr. Eng., Virginia Tech., Blacksburg, VA, USA, 2016.

350.

HDC

340

Hi-Speed Charging (Rate, C)

20

HD

120

100

B

60

HD

Fast Chargers ... going "GaN Fast" 3x Fast Charging with 50% Energy Savings

Navitas

2016: Navitas; 2017: Xiucheng Huang, "High Frequency GaN Characterization and Design Considerations," Ph.D Dissertation, Dept. Electr. Eng., Virginia Tech., Blacksburg, VA, USA, 2016.

Accelerating Wireless Power

350.

HDC

340

Hi-Speed Adoption (\$B/yr)

20

HD

120

100

BL

60

40

A Hi-Speed Disruption in Power...

Join the High-Speed Revolution

Start Your Engines

20

HD

120

100

BL

60

ЧD

20

MHz+