

WIPDA 2016

© Navitas

Speed Drives Performance

4th IEEE Workshop on Wide Bandgap Power Devices and Applications (WiPDA) Fayetteville, NC, USA. November $9^{\text {th }} 2016$.

Gene Sheridan, CEO
gene.sheridan@navitassemi.com

Speed \& Efficiency are Key

- Fast power devices have potential to enable high-frequency and high efficiency
- Frequency enables small size, lowcost and faster charging
- Efficiency enables energy savings
- With Silicon (or even discrete GaN), you can get one or the other
- With GaN power ICs, you get both at the same time with unequaled Speed \& Efficiency

World's First AllGaN ${ }^{\text {M }}$ Power ICs

Fastest, most efficient Hi-V GaN Power FETs

>20x faster than silicon
$>5 x$ faster than cascoded GaN
Proprietary design
15+ pending or issued patents
iörive First \& Fastest Integrated GaN Gate Drivers

>3x faster than any other gate driver
Proprietary design
8+ pending patents

World's First
 AllGaN ${ }^{\text {M }}$ Power IC

Up to 40MHz switching, $5 x$ higher density \& 20\% lower system cost

GaN Power IC: Hi-Speed FET, Drivers \& More

- Proprietary AllGaN ${ }^{\text {TM }}$ technology
- Monolithic integration of GaN FET, GaN Driver, GaN Logic
- 650 V eMode
- 20x lower drive loss than silicon (<35 mW at 1 MHz)
- Driver impedance matched to power device
- Very fast (prop delay and turn-on/off of 10-20 ns)
- Zero inductance turn-off loop
- High dV/dt immunity ($200 \mathrm{~V} / \mathrm{ns}$) with control
- Digital input
- Complete layout flexibility

Fast \& Clean High Voltage Transitions

- Prop delays 10-20 ns
- From PWM input to 10% of $\operatorname{FET} \mathrm{V}_{\mathrm{DS}}$ change
- Turn-on \& turn-off times 10-15 ns
- Zero gate loop inductance

$50 \mathrm{~ns} / \mathrm{div}$

Speed \& Integration \rightarrow Eliminate Turn-off Losses

External drivers

- Significant turn-off losses
- Just 1-2 nH of gate loop inductance can cause voltage spikes that create unintended turn-on of the GaN FET
- Adding a gate resistor reduces spikes but slows down the circuit creating additional losses

Integrated GaN drivers (iDrive ${ }^{\mathrm{TM}}$)

- Eliminate the problem
- Negligible turn-off losses

GaN Power IC - Fast \& Efficient

- 500 V Switching
- No overshoot / spike
- No oscillations
- 'S-curve’ transitions
- Zero Loss Turn-on
- Zero Loss Turn-off
- Sync Rectification
- High frequency
- Small, low cost magnetics

Navitas

New Magnetics, New Speeds

Frequency (MHz)
Navitas

Frequency Drives Size: Transformer (65 W)

Navitas

Frequency Drives Size: EMI Filter

Conductive frequency range: $150 \mathrm{kHz}-30 \mathrm{MHz}$

High Frequency \rightarrow Small Size \rightarrow Low Cost

GaN Power ICs enable Hi-Density Adapters

3x Higher Density with 50\% Energy Savings

Navitas

Fast Chargers ... going "GaN Fast"

3x Fast Charging with 50\% Energy Savings

Existing Si-based 15W	$\text { AllGaNTM } 2016$ $25 \mathrm{~W}$	AllGaN ${ }^{\text {TM }} 2017$ 25W
	2x Faster Charging	3x Faster Charging
$\begin{gathered} 100 \mathrm{kHz} \\ \text { Up to } 6.5 \mathrm{~W} / \mathrm{in}^{3} \\ 88 \% \end{gathered}$	$\begin{gathered} 300-500 \mathrm{kHz} \\ 11 \mathrm{~W} / \mathrm{in}^{3} \\ >92 \% \end{gathered}$	$\begin{gathered} >1 \mathrm{MHz} \\ 17.5 \mathrm{~W} / \mathrm{in}^{3} \\ >95 \% \end{gathered}$

Smartphones \& Tablets
 Drones

Accelerating Wireless Power

Existing Silicon-based multi-stage wireless power

AC-DC Adapter 88\% Efficiency

$$
\begin{array}{c|c}
\text { DC-DC } & \text { Power Amplifier } \\
\text { 94\% Efficiency } & 93 \% \text { Efficiency }
\end{array}
$$

Navitas

- 3-stages integrated in 1-stage
- 6.78 MHz Operation
- High-Efficiency

Single-Stage Amplifier

 90\% Efficiency- 650 V GaN Power ICs

AirFuel"Alliance

- Multi-stage Efficiency: 77\%
- GaN-enabled single stage: 90%
- 20\% lower system cost
- 3x faster charging

Wireless Transfer
90\% Efficiency

A Hi-Speed Disruption in Power...

Linear Regulators	Switching Regulators	Switching Regulators	HF Switching Regulators

Join the High-Speed Revolution

(2) Navitas ? Wig TEXAS
InSTRUMENTS

$\mathrm{ON}_{\substack{\text { On semionomatater }}}$

F

PowerAmerica
(2) Navitas

TVERROKCU日E

Gan sman

