Successful High-Frequency Applications with SiC

Minli Jia, Hao Sun / NVTS Shanghai EV Team

Guangzhou, November 2023

ir@navitassemi.com

Navitas Electrify Our World™

GàNFast Power Io

Copyright Navitas Semiconductor, 2023

- Background
- Challenges of SiC Devices for High Frequency Application
- Comparative Analysis Based on Buck Circuit
- GaN+SiC Based 500kHz 6.6kW Bi-DC/DC Development
- Summary

EV OBC Development Trend

Comparisons of Si, GaN and SiC

• Si vs GaN vs SiC

	Si	GaN	SiC
Band gap energy (eV)	1.12	3.45	3.26
Melting point (×1000°C)	0.15	0.8	0.76
Thermal conductivity (W/m.K)	1.5	1.3	4.9
Ctritical electric field (MV/cm)	0.3	3.5	3.2
Electron saturation velocity (10 ⁷ cm/s)	1	2.5	2
Electron mobility (×1000 cm ² /Vs)	1.4	1.8	0.9

• Characters of SiC

- 3rd WBG device had a huge advantage in switching speed, FOM, and thermal capability
- SiC has a slightly lower *Electron Saturation Velocity* than GaN, but it is still 2 times higher than traditional Si

Navitas

- Background
- Challenges of SiC Devices for High Frequency Application
- Comparative Analysis Based on Buck Circuit
- GaN+SiC Based 500kHz 6.6kW Bi-DC/DC Development
- Summary

SiC Trench Technologies

	SiC Planar	SiC Trench	GeneSiC SiC MOSFET
	Source Gate Metal P+ N+ Source JFET Region N- Drift layer	P+ N+Source	Gate Metal JFET P- Well N- Drift layer
	No factorial	brainese b Drain	Drain Trench-Assist Planar Gate Sic MOSFET
	> Repeatable	Inconsistent trench-etch profile	✓ Repeatable
Manufacturability	➢ High yield	Lower yields	√ High yield
	Low cost	➢ High cost	✓ Low cost
Performance	 High R_{DS(ON)} / area Slower switching FoM 	 Lower R_{DS(ON)} / area Faster switching FoM High R_{DS(ON)} / Δ temp 	 ✓ Lower R_{DS(ON)} / area ✓ Fastest switching FoM ✓ Lowest R_{DS(ON)} / Δ temp
Reliability	Rugged gate oxide (stable V _{TH})	Non-uniform gate oxide	 ✓ Rugged Gate oxide (stable V_{TH}) ✓ Highest 100% tested avalanche ✓ Long short-circuit withstand time

SPEC. Comparisons of the SiC Devices

	CIMODSTADJ Silicon Cachida Power MOSET CAMODSTADJ NOSET Technology Channel Technology Channel Technology Common Service Common Service	IMBG120R060M1H Imfineon IMBG120R060M1H Imfineon CoolsiC™ 1200V SiC Trench MOSFET Imfineon with .XT interconnection technology Imfineon	$\begin{array}{c} \mbox{GRF} TABLE \\ $
	CREE (1200 SiC) (C3M0075120J)	IFX (1200v SiC) (IMBG120R060M1H)	Genesic (1200v SiC) (G3R75MT12J)
I _{DS}	30A@25°C, 19.7A@100°C, Vgs=15V	36A@25°C, 26A@100°C ,Vgs=18V	38A@25°C, 27A@100°C, Vgs=18V
V _{GS}	-8V ~ +19V (-4V ~15V)	-7V ~ +23V (-5V ~18V)	-10V ~ +22V(-5V ~18V)
V _{GS(th)}	1.8V <vth=2.5v<3.6v< td=""><td>3.5V<vth=4.5v< 5.7v<="" td=""><td>1.8V<vth_typ=2.7v< td=""></vth_typ=2.7v<></td></vth=4.5v<></td></vth=2.5v<3.6v<>	3.5V <vth=4.5v< 5.7v<="" td=""><td>1.8V<vth_typ=2.7v< td=""></vth_typ=2.7v<></td></vth=4.5v<>	1.8V <vth_typ=2.7v< td=""></vth_typ=2.7v<>
R _{DS(ON)}	75mΩ(MAX=90mΩ)@25°C, 100mΩ@150°C /Vgs=15V and ID=20A	60mΩ(MAX=83mΩ)@25°C, 113mΩ@175°C /Vgs=18V and ID=13A	64mΩ(MAX=85mΩ)@25°C, 92mΩ@175°C /Vgs=18V and I _D =20A
Ciss	1390pF	1145pF	1545pF
Coss	58pF	22pF	47pF
Qg	48nC	34nC	47nC
Qrr	109nC Vgs=-4V , Isd=20A,Vr=800V, dIS/dt=1925A/us, Tj=25°C	165nC Vgs=-5V , Isd=13A,Vr=800V, dIS/dt=1000A/us, Tj=25°C	64nc @Vgs=-5V, Isd=20A,Vr=800V, dIS/dt=1200A/us, Tj=25°C
Vsd	4.5V (Typ.) ,4.0V(175°C)	4.1V(25°C), 3.9V(175°C)	4.9V (25°C), 4.4V(175°C)
Eoss	33uJ	22uJ	18uJ
Rg (int)	9 Ω	6 Ω	1.3 Ω
Rjc	Max=1.1°C/W	Max=0.83°C/W (typ=0.62 °C/W)	Max=0.77°C/W

扩散焊接芯片贴装工艺(.**XT工**艺)

• The same parameter, different manufacturers show different performance

E_{ON} , E_{OFF} and $R_{DS(ON)}$ Comparison

• 800V, Rg_ext=2Ω,Vg=-5V/18V, Tj=150°C

	GeneSiC		I	IFX		CREE	
	100kHz	600kHz	100kHz	600kHz	100kHz	600kHz	
Eon@20A	183.5uJ		264.7uJ		282.2uJ		
Eoff@20A	25.5uJ		25.5uJ 58.5uJ		.5uJ	107.7uJ	
P_on_loss	18.35W	110.1W	26.47W	158.82W	28.22W	169.3W	
P_off_loss	2.55W	15.3W	5.85W	35.1W	10.7W	64.6W	

 SiC devices of similar specifications from different venders show different characteristics in E_{ON}, E_{OFF} and R_{DS(ON)} characteristics.

Drive Circuit Design

• The driving loss mainly comes from the charge and discharge of *Cgd* and *Cgs*, and satisfies the following formular:

 $P_{loss\ dr} = V_{dr} * Q_a * f_s$

P _{loss_dr} @Q	g=47nC, Vgs=18V	,
100kHz	0.085W*2=0.17W	- /
500kHz	0.423W*2=0.846W	1
1 Mhz	0.846W*2=1.692W	

Description	Test Condition	Side	Value	Unit
		Input	12	mW
afety Supply Power	$R_{\theta JA} = 97 \text{ °C/W}^{1)}$, $T_J = 150 \text{ °C}$, $T_A = 25 \text{ °C}$	Driver A, Driver B	638	mW
		Total	1288	mW
of a to Supply Correct	$R_{\theta JA}$ = 97 °C/ W1), VDDA/B = 12V, T_J = 150 °C, T_A = 25 °C	Driver A, Driver B	53.1	mA
arety Supply Current	R_{0JA} = 97 °C/ W1), VDDA/B = 25V, T_{J} = 150 °C, T_{A} = 25 °C	Driver A, Driver B	25.5	mA
afety Temperature ²⁾		1	150	°C

- High temp. of driver IC for high fs amplicons. Heat dissipation measures must be taken for the driver IC
- Low temp. of driver IC for high fs amplicons.

Turn-on Crosstalk and Suppression Methods

• High side device turn-on

- Reduce drive loop inductance
- The value of Ron increase and Roff decrease
- Add clamp switch or ZD diode
- Add absorption Cap. @G-SK
- Use negative voltage power supply

Ch1:Vgs_SL, Ch2:Vds_SH, Ch3: IL₀, Ch4: Vgs_SH

Turn-off Crosstalk and Suppression Methods

• High side device turn-off

- Reduce drive loop inductance
- The value of Ron increase and Roff decrease
- Add clamp switch
- Add clamp diode
- Add absorption Cap. @G-SK

Ch1:Vgs_SH, Ch2:Vds_SL, Ch4: Vgs_SH, Ch5:IL₀

Thermal Solution

٠

Thermal design is important for SiC devices application. ٠

Case1

Case2

Case3

Case4

Case5

- Background
- Challenges of SiC Devices for High Frequency Application
- Comparative Analysis Based on Buck Circuit
- GaN+SiC Based 500kHz 6.6kW Bi-DC/DC Development
- Summary

Buck circuit Design

Simulation and Loss Breakdown

Navitas

ZVS CCM Waveforms @600kHz CREE

• C3M0075120J-CREE *L*=11.35μH

CH1:Vgs_SL, CH2:Vds_SH, Ch3: IL, Ch4:Vgs_SH

Navitas

• Ron=2 Ω , Roff=1 Ω

- Ion=1.5A
- *loff=19.9A*
- Off dv/dt=53.7V/ns

	/in	Pin	Vout	/out	Pout	Eff
399.76	2.3321	932.2803	191.39	4.7806	914.959	0.981421
499.71	2.9375	1467.898	240.08	5.9972	1439.808	0.980864
599.6	3.5446	2125.342	288.69	7.21	2081.455	0.97935
699.5	4.1749	2920.343	338.02	8.441	2853.227	0.977018

ZVS CCM Waveforms @600kHz Infineon

• IMBG120R060M1H-Infineon *L*=11.35μH

CH1:Vgs_SL, CH2:Vds_SH, Ch3: IL, Ch4:Vgs_SH

 $Rom C2 = R^{2}$ $Rom C2 = R^{2}$ $Ri = CI \quad Q^{2}$ $Ri = CI \quad Q^$

Ron=3 Ω , Roff=1 Ω

- Ion=3.7A
- *loff=20.0A*
- *Off dv/dt=86.1V/ns*

Vin	/in	Pin	Vout	/out	Pout	Eff
399.77	2.3062	921.9496	190.55	4.763	907.5897	0.984424
499.71	2.9087	1453.506	239.12	5.9791	1429.722	0.983637
599.6	3.5072	2102.917	287.8	7.192	2069.858	0.984279
699.5	4.1225	2883.689	336.89	8.425	2838.298	0.98426
799.4	4.7364	3786.278	386.1	9.661	3730.112	0.985166

٠

Navitas

ZVS CCM Waveforms @600kHz GeneSiC

• G3R75MT2J-GeneSiC *L*=11.35μH

CH1:Vgs_SL, CH2:Vds_SH, Ch3: IL, Ch4:Vgs_SH

Navitas

• Ron=6.9Ω, Roff=2.2 Ω

- I_{on}=4.6A
- I_{off}=20.7A
- *Off dv/dt=78.5V/ns*

Vin	/in	Pin	Vout	/out	Pout	Eff
399.79	2.2761	909.962	189.36	4.7295	895.5781	0.984193
499.74	2.8691	1433.804	237.75	5.94	1412.235	0.984957
599.6	3.4541	2071.078	285.81	7.142	2041.255	0.9856
699.5	4.0499	2832.905	334.27	8.355	2792.826	0.985852
799.4	4.643	3711.614	382.57	9.565	3659.282	0.9859

Test Results Analysis of ZVS CCM Buck

300 kHz	G3R75MT2J- GeneSiC	IMBG120R060M1H- Infineon	C3M0075120J- CREE
I _{ON} (A)	5.7	6.0	5.3
I _{OFF} (A)	24.1	24.4	24.1
Turn-Off dV/dt (V/ns)	<mark>83.1</mark>	<mark>95.0</mark>	<mark>62.6</mark>
Efficiency	<mark>98.64%</mark>	<mark>98.70%</mark>	<mark>98.17%</mark>
Temperature (°C) (Up/Down Devices)	38.9/40.5	43.2/40.6	69.4/51.2

600 kHz	G3R75MT2J- GeneSiC	IMBG120R060M1H- Infineon	C3M0075120J- CREE
I _{ON} (A)	4.6A	3.7A	1.5A
I _{OFF} (A)	20.7A	20.0A	19.9A
Turn-Off dV/dt (V/ns)	<mark>78.56</mark>	<mark>86.09V</mark>	<mark>53.75</mark>
Efficiency	<mark>98.59%</mark>	<mark>98.39%</mark>	<mark>97.7%</mark>
Temperature (°C) (Up/Down Devices)	57.4/47.7	57.1/48.7	101.4/58.5

800 kHz	G3R75MT2J- GeneSiC	IMBG120R060M1H- Infineon	C3M0075120J- CREE
I _{ON} (A)	2.6A	3.7A	/
I _{OFF} (A)	20.9A	20.0A	/
Turn-Off dV/dt (V/ns)	<mark>77.80</mark>	<mark>86.094</mark>	/
Efficiency	<mark>98.42%</mark>	<mark>98.29%</mark>	/
Temperature (°C) (Up/Down Devices)	45.1/47.1	48.8/49.3	/

- High dv/dt means fast switching speed, small turn-off loss and high efficiency.
- Infineon's SiC has the fastest turn-off speed, followed by Genesic, but due to Genesic's flat groove & Trenchassisted planar gate technology, Rjc is small, R_{DS(ON)} is low and efficiency is the highest.
- Cree has the slowest turn-off speed, the largest turn-off loss and the worst efficiency at high frequency.

Hard Switching CCM Buck converter

• Vin=800V

- Vo=400V
- Po=3.6kW

Item	Parameters
HS&LS SIC	G3R75MT2J-GeneSiC/IMBG120R060M1H-Infineon /C3M0075120J-CREE
Rated Operating Condition	800Vin-400Vout 4kW Pout
Switching Frequency	150kHz&200kHz
Inductor	ferrite with air gap 553.47
C _{in}	MKP1848520924K2 2uF*3
C _{out}	B32672P6105 1uF*4
Cooling method	Water coolant

ferrite with air gap L=553.47uH

Cin MKP1848520924K2 2uF

Cout B32672P6105 1uF

Copyright Navitas Semiconductor, 2023

CCM Buck Waveforms @200kHz GREE

• C3M0075120J-CREE Ron=2Ω, Roff=1Ω

Upper MOS:81.6°C *Lower MOS*:48.0°C

CH1:Vgs_SL, CH2:Vds_SH, Ch3: IL, Ch4:Vgs_SH

- *I*_{on}=8.84A
- *I*_{off}=10.40A
- Turn On dv/dt=79.6V/ns
- Turn Off d*v*/d*t*=39.9V/ns

Vin	<i>l</i> in	Pin	Vout	/out	Pout	Eff
399.78	2.4036	960.9112	194.53	4.8598	945.3769	0.983834
499.73	3.0005	1499.44	243.05	6.0711	1475.581	0.984088
599.6	3.5986	2157.721	291.63	7.283	2123.941	0.984345
699.5	4.1997	2937.69	340.27	8.498	2891.614	0.984316
799.4	4.8042	3840.477	389.03	9.715	3779.426	0.984103

CCM Buck Waveforms @200kHz Infineon

• IMBG120R060M1H-Infineon Ron= 3Ω , Roff= 1Ω

5.00 V 2 1 200 V 3 2.00 A 4 10.0 V

Navitas

Upper MOS:75.4°C *Lower MOS*:48.3°C

CH1:Vgs_SL, CH2:Vds_SH, Ch3: IL, Ch4:Vgs_SH

- *I*_{on}=8.7A
- *I*_{off}=10.3A
- Turn On dv/dt=76.8V/ns
- Turn Off d*v*/d*t*=43.3V/ns

Vin	<i>l</i> in	<i>P</i> in	Vout	/out	Pout	Eff
399.79	2.3344	933.2698	191.72	4.7891	918.1663	0.983817
599.6	3.4947	2095.422	287.42	7.179	2063.388	0.984712
699.5	4.0746	2850.183	335.25	8.373	2807.048	0.984866
799.4	4.6546	3720.887	383.06	9.567	3664.735	0.984909

CCM Buck Waveforms @200kHz GeneSiC

• G3R75MT2J-GeneSiC R_{on} =6.9 Ω , R_{off} =2.2 Ω

Navitas

Upper MOS:78.1°C *Lower MOS*:53.9°C

CH1:Vgs_SL, CH2:Vds_SH, Ch3: IL, Ch4:Vgs_SH

- *I*_{on}=8.6A
- *I*_{off}=10.2A
- Turn On dv/dt=76.5V/ns
- Turn Off d*v*/d*t*=43.8V/ns

V _{IN} (V)	I _{IN} (A)	P _{IN} (W)	V _{OUT} (V)	I _{оит} (А)	P _{OUT} (W)	Eff (%)
399.8	2.3	932	191.6	4.8	917	98.39
499.7	2.9	1,454	239.4	6.0	1,432	98.44
599.6	3.5	2,093	287.3	7.2	2,061	98.45
699.5	4.1	2,848	335.2	8.4	2,805	98.49
799.4	4.7	3,721	383.0	9.6	3,663	98.44

150kHz	G3R75MT2J- GeneSiC	IMBG120R060M1H -Infineon	C3M0075120J-CREE
lon (A)	8.46A	8.4A	8.56A
loff (A)	10.58A	10.5A	10.8A
Turn on dv/dt (V/ns)	<mark>78.3</mark>	<mark>75.8</mark>	<mark>76.6</mark>
Turn off dv/dt (V/ns)	46.4	45.5	42.4
Efficiency	<mark>98.75%</mark>	<mark>98.76%</mark>	<mark>98.72%</mark>
Temperature (Up/Down Devices °C)	67.2/47.6	63.2/41.1	67.6/44.3

200kHz	200kHz G3R75MT2J- GeneSiC		C3M0075120J-CREE
lon (A)	8.64A	8.7A	8.84A
loff (A)	10.24A	10.3A	10.4A
Turn on dv/dt (V/ns)	<mark>76.5</mark>	<mark>75.8</mark>	<mark>79.6</mark>
Turn off dv/dt (V/ns)	43.8	43.3	39.9
Efficiency	<mark>98.44%</mark>	<mark>98.38%</mark>	<mark>98.41%</mark>
Temperature (Up/Down Devices °C)	78.1/53.9	75.4/48.3	81.6/48.0

- GeneSiC ,Infineon and Cree have similar turn-on and turn-off speeds at same setup, so similar efficiency and thermal conditions.
- At present, due to the small turn-on current, the difference in turn-on loss is not large.

Navitas

- Background
- Challenges of SiC Devices for High Frequency Application
- Comparative Analysis Based on Buck Circuit
- GaN+SiC Based 500kHz 6.6kW Bi-DC/DC Development
- Summary

GaN + SiC Solution for OBC

Navitas 🔊

• GaN based TL solution for 800Vbat system

• GaN+SiC Solution for 800Vbat System

- GaN+SiC 400V solution, NVTS has been designed, power density up to 3.9kw/L.
- The 800V solution based on GaN is complex in control and its reliability needs to be tested.

sı 🗄

*s*₂ Ľ

S3 1 7

S4 1 1

TL-DNPC

VAB

• GaN+SiC 800V solution, simple and reliable, the device's own characteristics have special requirements for 500khz application.

•

Experimental platform 500 kHz Bi-DC/DC

	Parameters
Lr	6uH
Cr	50nF
f _{SW}	290 kHz
Turns ratio	12 : 25 (S9-P6-S7-P6-S9)
Magnetic	DMR51W

6.6kW Bi-DC/DC Charging Mode

V_{Bus}=360V; V_{Bat}=550V; P_o=6.6kW; D_{ps}=0.085

CH1:Vgs,S7 CH2:Vds,S7 CH3:ILrp CH4:Vds,S2 CH5:Vgs,S2 CH6:VCrp

$$f_{sw}$$
=394kHz; I_{off_GaN} =20.5A; I_{off_SiC} =6.9A

V_{Bus}=420V; V_{Bat}=890V; P_o=6.6kW; D_{ps}=0.105

CH1:Vgs,S7 CH2:Vds,S7 CH3:ILrp CH4:Vds,S2 CH5:Vgs,S2 CH6:VCrp

 f_{sw} =561kHz; $I_{off_{GaN}}$ =8.7A; $I_{off_{SiC}}$ =12.7A

Copyright Navitas Semiconductor, 2023

6.6kW Bi-DC/DC Discharging Mode

• V_{Bus}=360V; V_{Bat}=550V; P_o=6kW

V_{Bus}=420V; V_{Bat}=905V; P_o=6kW

 f_{sw} =568kHz; I_{off}_{GaN} =3.5A; I_{off}_{SiC} =12.0A;

6.6kW Bi-DC/DC Test Efficiency

- Peak Efficiency is 98.3% @charging mode.
- Output voltage 550V to 900V supports full load operation.

• Switching frequency range is from 400kHz to 570kHz.

- Since the gate capacitance of SiC is still relatively large, the drive capacity of the chip should be considered for applications above 500khz.
- The design of DBC insulation heat dissipation is an effective heat treatment method for SiC devices.
- Comparative test results show that low switching loss and low system thermal resistance should be considered, which is helpful for high frequencies design.
- Bi-DC/DC based on NVTS GaN and SiC for 500 kHz 6.6 kW 800V applications was evaluated. the results show that GeneSiC SiC delivers high efficiency and high power in high frequency (up to 600kHz), Thus for 800V charging applications, to provide customers with a simple and effective solution.

Discover more

Wechat

at

Weibo

Navitas Electrify Our World™

Navitas GâNFast™ Power IC Navitas Power

https://navitassemi.com/zh/