

Sustainability Benefits of GaNFast Power ICs

Anthony Schiro VP Quality & Sustainability, Navitas Semiconductor anthony.schiro@navitassemi.com

GaNFast Power ICs: Initial Design Focus – Mobile chargers

• Implement GaN Technology in the mobile charging market to:

 With so much material and energy savings – how do we quantify the Sustainability benefits of GaN?

Product Lifecycle assessment (LCA)

LCA Study: Goal & Scope

- Assess the potential life cycle environmental benefits of GaN power semiconductors in place of conventional Si
- Confirm alignment of life cycle impacts with product intent
- Understand potential hotspots and design factors

Functional Units I & II: 1 wafer, 1 die

 Production of GaN and Si power semiconductor wafers (6", 8", respectively) and dies

Functional Unit III: "charging a laptop over charger life"

 Provision of charging service in the US & China –with 65W GaN-based and Si-based chargers

LCA: System Boundary Cradle to Grave

LCA: Technical Details (Data Sources, Simulation Tools)

Inventory		
Primary data	Test data (energy use & efficiency, including standby or parasitic energy consumption), product teardowns, BoM data Primary component fabrication: literature, expert input	
Background data	Secondary components – library data (ecoinvent 3.7, GaBi electronics extensions 2021) ecoinvent 3.7, Market and literature values, expert consultation	
Geography & Logistics		
Manufacturing	Fabrication (wafer, die) - Taiwan, Grid electricity Chargers – Guangdong, China, Grid electricity	
US Use	West Coast US, WECC Grid or Household solar Via air from Taiwan, sensitivity for ocean transport	
Chinese Use	Guangdong Province, Chinese Grid or Household solar Via air from Taiwan, sensitivity for ocean transport	
Use/Operating		
Charger life (default)	r life (default) 3 years (used 50 weeks/year, 5 days/week for 3 years, charger unplugged rest of time)	
Usage scenarios	Business travel, business office, business+home office, home use	
Impact Model(s) & Tools		
IAMs	IPCC 2013 100y; ReCiPe 2016 Endpoint H/A; AWARE; CED	
Tool(s)	SimaPro 9.1.1	6 of 1

LCA: Raw Material Extraction and Material Replacement

LCA: Manufacturing Carbon Footprint

- After GaN epi, GaN technology is similar to existing CMOS processing technology
- Existing (sometimes idle) 6" and 8" fab capacity/infrastructure can be used with small investment

	Si HV MOSFET	GaN 650V HEMT
Material	Si wafer	Si wafer
Wafer Diameter	8″	6"
Starting Wafer Thickness	500-1000um	1000um
Finished Wafer Thickness	100-200um	250-300um
Die per wafer (equivalent device)	1	1.7

LCA: Manufacturing Carbon Footprint Energy demand drives environmental impacts in fabrication

- Decreased impacts for GaN power semiconductors arise from:
 - Epi growth is the primary factor for energy use in the wafer fab process
 - The GaN Power IC process has significant less epi growth than super-junction high voltage MOSFETs
 - Overall decreased energy needs in fabrication across all process steps
- 70% smaller die for the same performance drives a 70%+ reduction in carbon footprint per unit

LCA: Manufacturing Carbon Footprint GaN shows reduction in all assessed categories

Change in Potential Impact with GaN

Carbon Footprint Reduces with GaN Tech/Product Advances

LCA: System Manufacturing Footprint GaN Power IC decreases charger components, material, size, weight

LCA: System Energy Use Carbon Footprint Use phase is the most significant contributor to impacts

Product and System LCA Results GaN device saves 0.8kg CO2e per unit

- Efficiency of GaN Power IC 0.3kg
- Lower Carbon Footprint of GaN Power IC 0.5kg
- Achieves 30% reduction in direct Carbon Footprint impacts

Product and System LCA Results GaN based USB-C charger saves 4.6kg CO2e per unit

Comparison of Total Impacts 65W USB-C charger, 3 year use, Notebook charger, Average global use (230V/110V), Average of 4 use scenarios

- Efficiency improvement 2.5kg
- Dematerialization 2.1kg
- Achieves 20+% reduction in Carbon Footprint impacts

- Waste Energy
- Switches
- Cable
- Distribution (air)

Charger Except Switches, MPUs and Controllers

- MPUs and Controllers
- Packaging (in box)

Sustainability Benefits of GaNFast Power ICs

Navitas Case Study

Total Company + Product Impacts in 2021 29.2 metric tons CO2e

Total Benefit of GaNFast IC's in 2021 109 metric tons CO2e Power Semi Conversion from Si to GaN Drives Carbon Footprint Reduction and Accelerates the Global Path to Net Zero

Acknowledgements and Questions

 Special thanks to LCA experts: Lise Laurin, Caroline Taylor, Tom Etheridge (Earthshift Global)