

Unlocking the Power of GaN

PSMA Semiconductor Committee Industry Session

March 24th 2016 Dan Kinzer, COO/CTO dan.kinzer@navitassemi.com

Navitas GaN Power IC Navitas GaN Power

GaN vs. Si

- WBG GaN material allows high electric fields so high carrier density can be achieved
- Two dimensional electron gas with AlGaN/GaN heteroepitaxy structure gives very high mobility in the channel and drain drift region
- Lateral device structure achieves extremely low $\rm Q_g$ and $\rm Q_{OSS}$ and allows integration
- Large diameter GaN-on-Si, low cost Si-compatible processing

Existing GaN Packages

- Through-hole
 - High inductance, limits switching frequency

- Cascode (co-pack and/or stacking)
 - Multi-die, additional components
 - Higher cost for dice and assembly

- PCB-embedded
 - Non-standard, high cost

Speed Limit: Complex Drive

Navitas

- dMode GaN needs extra FET, extra passives, isolation, complex packaging
- Early eMode GaN requires many added circuits:

Package Parasitics Impede GaN Performance

GaN with Integrated Driver: Simple, Fast

Multichip Si / GaN Integration

• Multi-chip module integrates Si driver and GaN transistor(s)

• 80V product example

6 mm x 8 mm

TI LMG200 integrated driver + half-bridge

Typical Circuit

Simple Integration of 2 Power FETs & Bootstrap

- Monolithic GaN transistor integration
- Gate drive still external / complex
- 100V example

EPC2107 – Enhancement-Mode GaN Power Transistor Half Bridge With Integrated Synchronous Bootstrap Preliminary Specification Sheet

Monolithic GaN Integration with Buffer

- Monolithic GaN Half-Bridge including input buffer stage
 - Example uses low voltage process, requires eMode and dMode devices
 - Low voltage DC/DC application

Creating the World's First AllGaN™ Power ICs

Up to 40MHz switching, 4x higher density & 20% lower system cost

AllGaN™

- Proprietary core technology platform
- Industry's first GaN Power IC Process Design Kit (PDK)
- Monolithic integration of GaN IC circuits (drive, logic) up to 650V with GaN FET(s)
- Other functions can also be included, such as
 - Hysteretic digital inputs, voltage regulation, ESD protection
- High-volume production capability
- World-class partners for wafers, assembly & test

Navitas GaN Power IC

- Monolithic integration
- 20X lower drive loss than silicon
- Driver impedance matched to power device
- Shorter prop delay than silicon (10ns)
- Zero inductance turn-off loop
- Digital input (hysteretic)
- Rail-rail drive output
- Layout insensitive

Power QFN Packaging

- Attractive attributes
 - Leadframe package outline
 - Industry-standard
 - Low-cost
 - Small (5 x 6 mm)
 - High voltage clearance (>2 mm)
 - Low thermal resistance (<2°C/W)
 - Kelvin gate driver connection
 - Low inductance power connections (~0.2nH)
 - Supports multi-chip co-packaging
 - Low profile (0.85 mm)

Clean Gate Waveforms

- Discrete driver:
 - Gate loop inductance creates overshoot (even with good layout)
 - Reliability concern
- GaN Power IC:
 - No gate loop parasitic
 - Clean and fast gate signal

Rail-to-Rail Gate Signal

- Other GaN integrations offer simple buffer stages
 - Cannot efficiently deliver V_{DD} voltage to the gate due to lack of PMOS transistor
 - Gate droop creates performance and variability issues
- GaN Power IC delivers rail-to-rail gate signal

High Frequency Drive with Minimal Delay

- 10-20ns propagation delay (can be further reduced)
- Switches at 10MHz effortlessly^{20ns/div}
- Smooth, clean gate drive waveform

Application example #1: 150W Boost PFC

- Input
- Output
- Frequency*
- : Universal AC (85-265V_{AC}, 47-63Hz)
- : 400V, 0.27A (150W)
- : PFC= >500kHz (*limited by control IC)

- Size
 - Construction
 - Power Factor
- Efficiency

- : 100 x 50 x 20mm "No heatsink" design
- : 2-layer PCB, SMT powertrain on bottom side
- : >0.995 at 150W
- : 98.1% (220V_{AC}) / 97% (120V_{AC})

Simple Circuit Design

Easy, Flexible Layout

- 100 x 50 x 20mm
- All active semis on bottom-side

EMI Filter

- Low profile
- 'No-heatsink' design
- 2-layer
- 2 oz Cu
- Standard vias

Ð CRI ISI Bulk Cap LF2 PFC Boost Diode 0 **GaN Power IC** PFC Control IC 6 P58884 8116 &-08 **D**3 **D**2

AC Bridge Rectifier

Top side

PFC

Inductor

Bottom side

Fast, Clean, and Cool with Integrated Drive

- Fast, clean PFC operation
 - At 220V $_{\rm AC}$, 50% and 100% of peak line
- Cool GaN Power IC
 - Only $61^{\circ}C$ at $220V_{AC}$ and 150W (full load)

Application Example #2: 150W Half-Bridge

- 500V Switching
- No overshoot / spike
- No oscillations
- 'S-curve' transitions
- ZVS Turn-on
- Zero Loss Turn-off
- Sync Rectification
- High frequency
- Small, low cost filter

Conclusion

- GaN offers superior switching performance vs. Silicon
 - Extremely low input, output, and Miller capacitance
- Speed and performance inhibited by discrete drive and packaging
 - Very difficult to have clean gate waveforms that reliably stay within safe operating range
 - eMode GaN is substantially easier to package and enables monolithic drive
- Monolithic GaN Power ICs:
 - Eliminate gate loop parasitics for a fast, clean gate with no overshoot
 - Unlock the power of GaN, enabling significant increase in frequencies and power density
 - Offer best performance and cost potential
- High levels of integration are possible: power, drive, protection, regulation
 - Enables fast adoption of high frequency circuit topologies