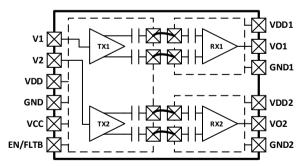

IsoFast[™]Half-Bridge GaN Digital Isolator

FEATURES

- Extreme CMTI up to 200V/ns
- Switching Frequency up to 14MHz
- Minimum Pulse Width 36ns
- Low Pulse Width Distortion < 1.5ns
- Very Low Jitter <1ns
- Double Capacitive Isolation
- Peak Isolation Voltage V_{ISO} (60s) > 4kV_{RMS}
- DC Working Voltage VIORM (40yrs) 975V
- 2kV HBM ESD Protection
- Temperature Range -40°C to 125°C
- Output supplies Operation 5V±10%
- 190mA pull-up / 300mA pull-down digital driver typical peak current
- TTL Digital Input Controls compatible with 3.3V±10%, 5V±10% and 12V±10%
- Input Supply Operation compatible with 8V...18V±10% (VCC) or 5V±10% (VDD)
- SOIC16 Narrow Body and SOIC14 Wide Body
- Carrier-Free Modulation
- Under Voltage Lockouts VDD, VDD1 and VDD2
- Low Quiescent-current Consumption (350µA on input supply and 300µA on each output supply)
- Low current consumption in disabled mode (230µA on input supply and 290µA on each output supply)

APPLICATIONS

- Single-Stage Converters
- DC-DC Switched Power Supplies
- High-Voltage Motor Control
- High-Voltage Inverters

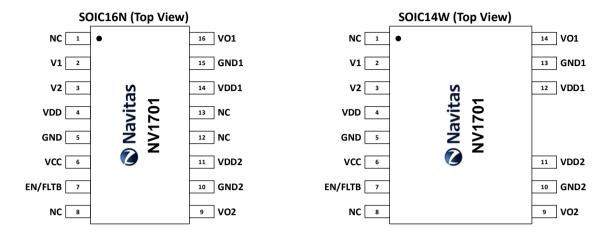


DESCRIPTION

The NV1701 is a half-bridge digital isolator. This device has 2 fully isolated forward logic input and output buffers separated by Navitas' proprietary double capacitive Silicon isolation barrier. It provides galvanic isolation above 10 kV surge voltage between any input or output combination and can sustain common mode transients as large as 200V/ns. A digital signal is received through a 3-12V compatible Schmitt-triggered input buffer, translated to modulated balanced signals, transmitted across an integrated dual-layer capacitive isolation barrier before being demodulated and buffered to a digital output.

This Navitas' proprietary modulation technique is free of high frequency carrier for better EMC performances while providing a periodic refresh signal every $t_{REFRESH} < 340$ ns in case of steady state input signal. The NV1701 has been optimized for switching applications. In such cases, the power switches do not toggle while a fast transient event (dV/dt) is occurring. A "blank-andrefresh" feature is implemented in NV1701 making it robust against possible input noise induced by hardswitching events. The NV1701 is able to transmit short pulses as low as 36ns with low distortion and very low jitter, making it an ideal choice when, for example, extreme conversion ratio (i.e. very low duty cycles) are required as in DC-DC converter applications.

Simplified block diagram



SEE IMPORTANT NOTICES AND DISCLAIMERS AT THE END OF THIS DATA SHEET REGARDING THE INFORMATION IN THIS DATA SHEET, THE USE OF OUR PRODUCTS, AND YOUR RESPONSIBILITIES RELATING TO SUCH USE.

DATASHEET

PIN DESCRIPTION

Pin Definition

PIN NUMBER PIN NA			FUNCTION	DESCRIPTION
NV1701N	NV1701W		FUNCTION	DESCRIPTION
1	1	NC	NA	Do not connect.
2	2	V1	Digital Input	digital input for channel 1.
3	3	V2	Digital Input	digital input for channel 2.
4	4	VDD	Positive Supply	5V Input/Output power supply. When VCC is available, the VDD is internally generated and must be left floating (see also section "Supplies" further in this document). In this case VDD could be used for supplying external low noise circuits with maximum 1mA. If VCC is not available, VDD must be shorted to VCC and supplied with 5V voltage source.
5	5	GND	Ground	Input ground.
6	6	VCC	Positive Supply	Input power supply. Connect to 8V-18V voltage source. If not available, see pin 4.
7	7	EN/FLTB	Digital Input/Output	Enable input and Fault output. In normal operation, this pin must be driven high via pull-up resistor to VDD or VCC with R_{PU} >VCC/5mA. It has an internal pull-up to VDD with 100k Ω typical. When driven low, it unconditionally drives the VO1 and VO2 outputs low. In case of fault condition (UVLO on VDD), this pin is driven low for at least 2.5 μ s, with a typical 5mA current strength.
8	8	NC	NA	Do not connect.
9	9	VO2	Digital Output	Channel 2 digital output.
10	10	GND2	Ground	Output channel 2 ground.
11	11	VDD2	Positive Supply	Output channel 2 power supply. Connect to 5V voltage source.
12 13	NA	NC	NA	Left floating or removed for isolation between output channels.
14	12	VDD1	Positive Supply	Output channel 1 power supply. Connect to 5V voltage source.
15	13	GND1	Ground	Output channel 1 ground.
16	14	V01	Digital Output	Channel 1 digital output.

SPECIFICATIONS

Absolute Maximum Ratings

PARAMETER	DESCRIPTION	MIN	MAX	UNIT
VCC vs. GND	DC Supply vs. ground	-0.5	26.4	
VDDx vs. GNDx	DC Supply vs. ground (same side)	-0.5	6	
GND vs. GND1 GND vs. GND2 GND1 vs. GND2	DC Isolation SOIC16N	-750	750	
GND vs. GND1 GND vs. GND2 GND1 vs. GND2	DC Isolation SOIC16W	-1500	1500	V
Inputs vs GND	Input voltage on V1, V2 versus GND	-0.5	14	
EN/FLTB vs GND	Input voltage on EN/FLTB versus GND	-0.5	26.4	
Outputs vs GNDx	Output voltage on VOx versus GNDx (same side)	-0.5	VDDx+0.5]
Tj	Junction temperature	-40	150	°C

ESD Ratings

PARAMETER	DESCRIPTION	MIN	MAX	UNIT
VHBM	Human Body Model robustness	-2000	2000	V
Vcdm	Charged Device Model robustness	-500	500	V
ILATCHUP	Latch-up immunity	-200	200	mA

Recommended Operating Conditions

PARAMETER	DESCRIPTION	MIN	MAX	UNIT
VCC vs. GND	High Voltage DC Supply vs. ground	7.2	19.8	V
VDD vs. GND	DC Supply vs. ground (primary side)	4.5	5.5	V
I(VDD)	External use (output sourcing current)	0	1	mA
VDDx vs. GNDx	DC Supply vs. ground (secondary side)	4.5	5.5	V
Inputs vs. GND	Input voltage on V1, V2 versus GND	-0.3	13.2	V
EN/FLTB vs. GND	Enable input versus GND	-0.3	19.8	V
Іоит	DC Output current on VOx for VDDx = 5V	-50	50	mA
fsw	Switching Frequency	0	14	MHz
T _A	Ambient Temperature	-40	125	°C

Insulation Characteristics

PARAMETER	DESCRIPTION	SOIC16N	SOIC14W	UNIT
CLR External clearance	Shortest distance through air	>4	>8	22.22
CRP External creepage	Shortest distance through the package	>4	>8	mm
DTI Isolation distance	Minimum internal isolation gap	>20	>20	μm
Сів	Isolation barrier capacitance (per channel)	200	200	fF
Viso	Withstanding isolation voltage (60s)	1.5	4	kV _{RMS}
VIOWM	Maximum working isolation voltage	480	690	V _{RMS}
VIOTM	Maximum transient isolation voltage (60s)	2.1	5.65	kV
VIORM	Maximum repetitive peak isolation voltage	678	975	V
CMTI	Common-Mode Transient Immunity	200	200	V/ns
CMT _{BLANK}	Common mode transient threshold for blanking V1 & V2	>5	>5	V/ns
t _{BLANK_DLY}	Output refresh delay after blanking	<55	<55	ns

Electrical Characteristics at 5V Supply

Electrify Our World"

VDD/VCC, VDD1, VDD2 over recommended operating conditions. Typical values are given at 25°C ambient temperature and VDD=VCC=VDD1=VDD2=5V.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT
Voн output high level	VO1, VO2, Iout = -50mA	3.66	4.62	5.26	V
VoL output low level	VO1, VO2, Iout = 50mA	0.08	0.14	0.32	V
IPU_PK peak pull-up current on VO1, VO2	C _{LOAD} = 1nF		190		mA
IPD_PK peak pull-down current on VO1, VO2	C _{LOAD} = 1nF		300		mA
V _{IH} input high level	V1, V2, EN/FLTB	2.08	2.47	2.8	V
V _{IL} input low level	V1, V2, EN/FLTB	0.82	1.11	1.7	V
VIHYST input hysteresis	V1, V2, EN/FLTB	0.9	1.36	1.62	V
V _{FLTB} EN/FLTB voltage in fault mode	Isink=5mA			0.8	V
I⊪ high-level input leakage at V1	V1 = 5.5V			50	μΑ
I⊪ high-level input leakage at V2	V2 = 5.5V			10	μΑ
IIL low-level input leakage at VFLTB	V _{FLTB} = 0V, VCC=VDD=5.5V	-90			μΑ
VTH_UVLO_UV_VDDx rising edge UVLO threshold	VDDx rising edge	4.230	4.350	4.480	V
VTH_UVLO_DN_VDDx falling edge UVLO threshold	VDDx falling edge	4.120	4.240	4.360	V
V _{UVLO_HYST_VDDx} UVLO threshold hysteresis	VDDx	82.5	107	115	mV

Switching Characteristics

VDD/VCC, VDD1, VDD2 over recommended operating conditions. Typical values are given at 25°C ambient temperature and VDD=VCC=VDD1=VDD2=5V.

PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNIT
tPDLH, tPDHL Propagation Delay	V1,V2,EN/FLTB to VO1,VO2	30	50	65	
tpdlh-tpdhl Pulse Width Distortion	V1,V2 to VO1,VO2			3.5	
Channel to channel skew VDD1=VDD2=5V	V1 to VO1 vs. V2 to VO2			1.5	
Channel to channel skew VDD1/2=4.5V VDD2/1=5.5V	V1 to VO1 vs. V2 to VO2			5	ns
t _R Output rise time	C _{OUT} = 15pF, 10% to 90%		1	2.3	
t _F Output fall time	C _{OUT} = 15pF, 90% to 10%		1	2.3	
t _{DT} Dead time		14.4	18	24	
tstart Startup time (secondary sides)	During fast supply rising edge		1	2	μs

Supply Current Characteristics

VDD=VCC, VDD1, VDD2 over recommended operating conditions. Typical values are given at 25°C ambient temperature and VDD=VCC=VDD1=VDD2=5V.

PARAMETER	CONDITIONS	CURRENT	MIN	ТҮР	MAX	UNIT
		IVDD		200		μΑ
Supply current in disabled mode	EN/FLTB = OV	IVDD1		275		
		IVDD2		275		
		IVDD		350	450	
	V1 = 0V & V2 = 0V	IVDD1		300	385	μΑ
Supply surrent in DC mode		IVDD2		300	385	
Supply current in DC mode		IVDD		350	450	
	V1 = 5V & V2 = 5V	IVDD1		300	385	
		IVDD2		300	385	
		IVDD		560	715	
Supply current at 1MHz	50% Duty Cycle, VO1 & VO2	IVDD1		395	485	μA
	load 15pF ¹	IVDD2		395	485	
		IVDD		2.4	3.15	mA
Supply current at 10MHz	50% Duty Cycle, VO1 & VO2 load 15pF ¹	IVDD1		1.09	1.37	
		IVDD2		1.09	1.37	

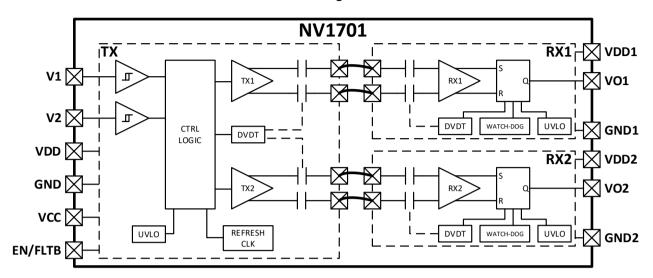
¹Dynamic current in C_{load} is removed from the supply current

IsoFast[™] NV1701

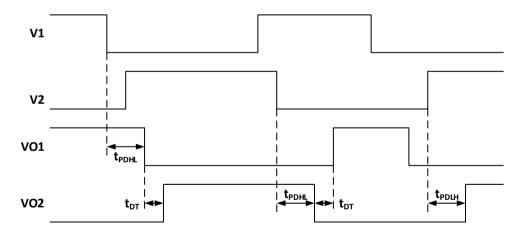
VCC (VDD generated by internal LDO), VDD1, VDD2 over recommended operating conditions. Typical values are given at 25°C ambient temperature and VCC=12V, VDD1=VDD2=5V.

(All)

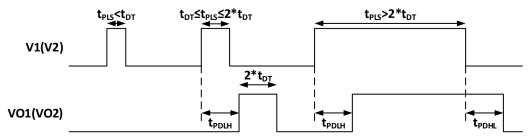
PARAMETER	CONDITIONS	CURRENT	MIN	ТҮР	MAX	UNIT
		IVCC		250		μΑ
Supply current in disabled mode	EN/FLTB = 0V	IVDD1		275		
		IVDD2		275		
		IVCC		360	385	
	V1 = 0V & V2 = 0V	IVDD1		300	325	μA
Supply surrent in DC mode		IVDD2		300	325	
Supply current in DC mode	V1 = 5V & V2 = 5V	IVCC		360	385	
		IVDD1		300	325	
		IVDD2		300	325	
	50% Duty Cycle, VO1 & VO2 load 15pF ²	IVCC		570	625	
Supply current at 1MHz		IVDD1		390	430	μA
	load 15pr	IVDD2		390	430	
		IVCC		2.15	2.4	
Supply current at 10MHz	50% Duty Cycle, VO1 & VO2	IVDD1		1.09	1.28	mA
	load 15pF ²	IVDD2		1.09	1.28	


² Dynamic current in C_{load} is removed from the supply current

IsoFast[™] NV1701

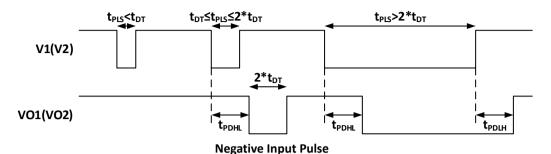

DETAILED DESCRIPTION

Block Diagram


Input logic (AST)

The NV1701 is composed of a transmitter die and two identical receiver dies. The distance between each die is such that it can sustain the HV rating of the product. An anti-shoot-through (AST) logic is integrated, with a dead time t_{DT} of 18ns typical. The logic is such that if both V1 and V2 inputs are high, none or only one of the outputs will be active. One output will be active only if its corresponding input is high for at least t_{DT} delay prior the rising of the other input. If both inputs go up within t_{DT} delay, then both outputs will remain low.

Before passing by the internal AST logic, each input passes through a deglitch circuit, also with the same deglitch time t_{DT} . Any toggling at the deglitch circuit input resets its timing. Only pulses with at least t_{DT} duration without any digital noise can pass the internal deglitch circuit and go to the AST logic.


In practice, the minimum recommended input pulse width is $2^{t}t_{DT}$. If the inputs are driven by a shorter pulse (t_{DT} <tpulse<2 t_{DT}), it will be internally extended to the minimum pulse duration of $2^{t}t_{DT}$. For tpulse<tpt, the input is filtered-out by the internal deglitch circuit.

Positive Input Pulse

Electrify Our World

It is not recommended to rely on the internal AST logic as the 18ns typical internal dead time is small and might not be sufficient in some applications. It can be considered as an internal protection that will limit shoot-through duration in case of error on external controls during the development of a new board.

All inputs (V1, V2, EN/FLTB) have TTL compatible levels. It is not recommended to exceed 14V on these digital inputs (note that these are high-voltage pads so that there is no risk of self-supply of the chip if V1, V2 or EN/FLTB is high while VDD or VCC are not supplied).

EN/FLTB

This pin is internally pulled up to VDD across a HV pass transistor. This pin can have an optional external pull-up up to 18V (+10%). Any capacitor on this pin can slow down the turn-on of the circuit. This pin is internally pulled down (with at least 5mA pull-down current) if VDD is below UVLO threshold. EN/FLTB can never be directly connected to a positive supply with a low impedance. The minimum external pull-up resistor, if used, should be at least equal to the external pull-up voltage divided by 5mA. If a smaller pull-up resistor is used, the circuit could detect an over-current in the EN/FLTB pin and protect it by implementing a hiccup current limitation on this pin (typical 600ns active and 12µs off). The EN/FLTB input is blocking the signals V1 / V2 using two internal AND gates. The outputs of these two internal AND gates go to the internal deglitch and AST logic of previous section. It also means that any digital noise on EN/FLTB can directly affect the internal V1 and V2 signals. In noisy environment, it might be required to add a local decoupling capacitance on the EN/FLTB pin to avoid unexpected disturbances (this extra capacitor slows down the circuit startup). When an internal fault is activated, this fault is internally forced to a minimum duration of 2.5µs typical. When such a fault occurs, it immediately sends a reset pulse to the two output channels of the chip (VO1 and VO2). Note that no internal refresh is sent during a fault as the outputs are automatically reset thanks to their integrated watchdog feature.

VO1 / VO2 outputs

These outputs can drive typical 190mA source and 300mA sink peak currents with the VDD1 / VDD2 level (5V typical). These outputs have a short-circuit protection to GND and VDD. For a short-circuit to GND (resp. VDD), if the output does not exceed 40% of VDD level (resp. does not pass below 30% of VDD) within 600ns when the input is high (resp. low), the circuit will consider that there is a short-circuit condition. In this case, the output is immediately set to high impedance for 10µs. After this, if the input is still "1" (resp. "0"), the driver will try again for 600ns to pull-up (resp. pull-down) the output. This Hiccup protection limits the average output current in case of short-circuit to GND or VDD.

Watchdog & Refresh

The isolator uses a proprietary modulation technique with a periodic data refresh, so that in case of unexpected corrupted data, it would not last for more than 340ns. Also, if the isolator receiver's part does not detect any signal from a data change or refresh pulse during 1.5 μ s, the internal watchdog is triggered. In this case, the output is immediately forced to zero, as long as there is no detected input signal. Note that in case of a slow decrease of the primary side supply (<1V/ μ s), the transmitter is able to send a last RESET pulse to the receiver when the transmitter UVLO threshold is reached. The VO1 and VO2 outputs are then reset to GND1 and GND2 respectively. The watchdog feature is a security in case of prompt accidental loss of the primary supply, in which case the primary would not have time to send a last reset pulse.

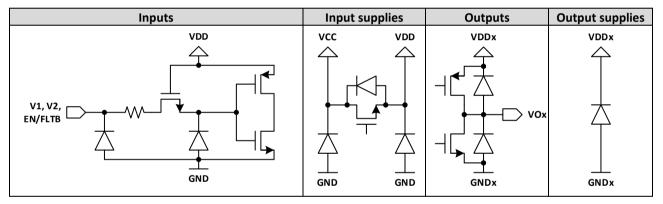
Supplies

A decoupling capacitor of at least 10nF is recommended on VDD1 and VDD2. On the primary side of the NV1701, the circuit can be supplied either by VCC (>7.2V) or by VDD (5V) directly. If supplied by VCC, it is recommended to add at least 3nF on VDD (and 10nF if the circuit can see dv/dt events larger than 20V/ns). If a larger capacitor is used, it will appear as a temporary short-circuit for the LDO so that the EN/FLTB would remain low till the capacitor is charged (with a pull-up current of about 1mA once the short-circuit protection is activated). It is not recommended to exceed $100V/\mu s$ on VCC vs. GND as it might generate a slight overshoot at the LDO output. When using VCC, the VDD pin should not be used to bias any noisy external circuit. VDD could be used for sourcing external low noise circuits with maximum 1mA.

IsoFast[™] NV17

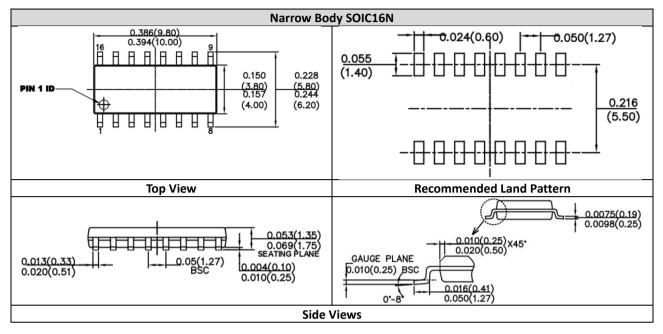
If supplied directly by an external 5V supply on VDD, then VCC must be connected to VDD. A 10nF decoupling capacitor is recommended.

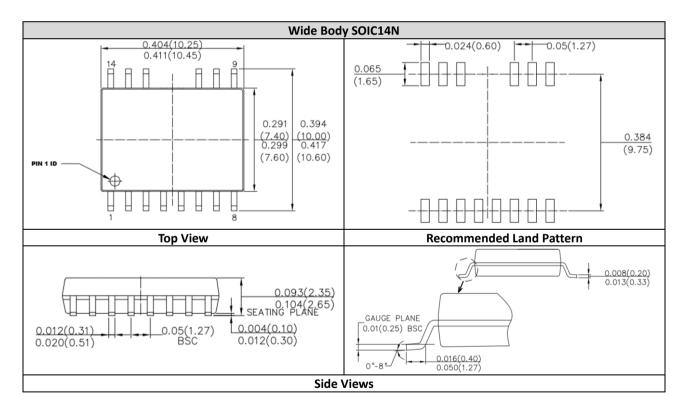
On the primary side, the startup time can be as low as 3μ s for fast rising supply. On the secondary side, the startup time can be as low as 1μ s for fast rising VDD1/VDD2 supply.


High voltage dv/dt & Blanking

Electrify Our World

The NV1701 is optimized for switching applications. For dv/dt events (between GND and any GND1/GND2) up to 5V/ns, VO1/VO2 will remain a delayed copy of V1/V2 with low distortion and low jitter.


Above 5V/ns (between 5V/ns and 10V/ns), a blanking feature is implemented independently for each channel. The blanking is operating as follows. As soon as the primary side of the NV1701 detects a dv/dt event above 5V/ns (one detector for each channel 1 and 2), it samples and holds the corresponding input state. During this time, no refreshing SET or RESET pulse is sent across the capacitive insulation. When dv/dt event goes below 5V/ns plus an internal delay of typically 16ns, the primary side stops its sample/hold status and reconsiders the input state at that moment. Based on this, it immediately sends the relevant SET or RESET pulse to refresh the secondary side state that was in hold state during the dv/dt. During the primary side blanking period, any input change (after the internal deglitch circuitry) is not considered. It will be considered only when the dv/dt is finished (<5V/ns).


ESD I/O Schematics

PACKAGE INFORMATION

9

Javita

Electrify Our World

IsoFast[™] NV1701

EXCEPT TO THE EXTENT THAT INFORMATION IN THIS DATA SHEET IS EXPRESSLY AND SPECIFICALLY WARRANTED IN WRITING BY NAVITAS SEMICONDUCTOR ("**NAVITAS**"), EITHER PURSUANT TO THE TERMS AND CONDITIONS OF THE LIMITED WARRANTY CONTAINED IN NAVITAS' STANDARD TERMS AND CONDITIONS OF SALE OR A WRITTEN AGREEMENT SIGNED BY AN AUTHORIZED NAVITAS REPRESENTATIVE, (1) ALL INFORMATION IN THIS DATA SHEET OR OTHER RELIABILITY AND TECHNICAL DATA, AND ANY OTHER DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE OR TOOLS, SAFETY INFORMATION AND OTHER RESOURCES, ARE PROVIDED "AS IS" AND WITH ALL FAULTS; AND (2) NAVITAS MAKES NO WARRANTIES OR REPRESENTATIONS AS TO ANY SUCH INFORMATION OR RESOURCES, IN THIS DATA SHEET OR OTHERWISE, AND HEREBY DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

CUSTOMER RESPONSIBILITIES. This data sheet and other design resources and information provided by Navitas are intended only for technically trained and skilled developers designing with Navitas- or GeneSiC-branded products ("**Products**"). Performance specifications and the operating parameters of Products described herein are determined in the independent state and may not perform the same way when installed in customer products. The customer (or other user of this data sheet) is solely responsible for (a) designing, validating and testing the products and systems in which Products are incorporated; (b) designing, validating and testing the application in which Products are incorporated; (c) ensuring the application meets applicable standards and any safety, security, regulatory or other requirements; (d) evaluating the suitability of Products for the intended application and the completeness of the information in this data sheet with respect to such application; (e) procuring and/or developing production firmware, if applicable; and (f) completing system qualification, compliance and safety testing, EMC testing, and any automotive, high-reliability or other system qualifications that apply.

NON-AUTHORIZED USES OF PRODUCTS. Except to the extent expressly provided in a writing signed by an authorized Navitas representative, Products are not designed, authorized or warranted for use in extreme or hazardous conditions; aircraft navigation, communication or control systems; aircraft power and propulsion systems; air traffic control systems; military, weapons, space-based or nuclear applications; life-support devices or systems, including but not limited to devices implanted into the human body and emergency medical equipment; or applications where product failure could lead to death, personal injury or severe property or environmental damage. The customer or other persons using Products in such applications without Navitas' agreement or acknowledgement, as set forth in a writing signed by an authorized Navitas representative, do so entirely at their own risk and agree to fully indemnify Navitas for any damages resulting from such improper use. In order to minimize risks associated with such applications, you should provide adequate design and operating safeguards.

CHANGES TO, AND USE OF, THIS DATA SHEET. This data sheet and accompanying information and resources are subject to change without notice. Navitas grants you permission to use this data sheet and accompanying resources only for the development of an application that uses the Products described herein and subject to the notices and disclaimers set forth above. Any other use, reproduction or display of this data sheet or accompanying resources and information is prohibited. No license is granted to any Navitas intellectual property right or to any third-party intellectual property right. Navitas disclaims any responsibility for, and you will fully indemnify Navitas and its representatives against, any claims, damages, costs, losses and liabilities arising out of your use of this data sheet and any accompanying resources and information.

TERMS AND CONDITIONS. All purchases and sales of Products are subject to <u>Navitas' Standard Terms and Conditions of Sale</u>, including the limited warranty contained therein, unless other terms and conditions have been agreed in a writing signed by an authorized Navitas representative. This data sheet, and Navitas' provision of this data sheet or other information and resources, do not expand or otherwise alter those terms and conditions.

Navitas, GeneSiC, the Navitas and GeneSiC logos, GaNFast, GaNSafe and other Navitas marks used herein are trademarks or registered trademarks of Navitas Semiconductor Limited or its affiliates. Other trademarks used herein are the property of their respective owners.

Copyright © 2024 Navitas Semiconductor Limited and affiliates. All rights reserved.

Contact: _____