Navitas Let's go GåNFast™

Systematic Approach to GaN Power IC Reliability

APEC 2019 PSMA Industry Session IS11: "Current reliability and product qualification topics for SiC and GaN wide band gap devices", March 20th, 2019 Dr. Darshan Gandhi, Sr. Director Reliability Engineering

darshan.gandhi@navitassemi.com

Navitas Proprietary & Confidential

World's First GaNFast[™] Power ICs

Fastest, most efficient GaN Power FETs First & Fastest Integrated GaN Gate Drivers

World's First GaNFast™ Power ICs

GàNFast[™]

>20x faster than silicon

- >5x faster than cascoded GaN
- Proprietary design
- Gate is fragile and sensitive to noise

>3x faster than any other gate driver

- Proprietary design
- 30+ patents granted
- Fast, protected gate, no need for negative drive

- Simple, fast and reliable
- Easy to use and package

Up to 40MHz switching, 5x higher density & 20% lower system cost

Enabling Advanced Technologies

GàNFast™

PDK Analysis

Device element	Reliability model requirement
Capacitor	Guaranteed by proprietary design, verified by
Resistor	characterization – reliability models not required
Electro-migration	Mature process and Foundry qualified
LV GaNFET	Reliability models required
HV GaNFET	Reliability models required

Reliability models need to replicate stresses seen in real application

Typical Application: Mobile Chargers

MacBook <100 kHz <6.5 W/in³, 92%

ACF (ZVS) Topology
300kHz – 1 MHz

• 120 V – 240 V AC

Navitas ~300 kHz Power density = 39 W/in³

GaNFast[™]

65W USB-PD

Application Profile for ACF Charger GaNFast

Navitas Proprietary & Confidential

Full Power Stress Breakdown

Stress seen by HV GaNFET:

- High Temperature
- High Frequency
- High Voltage (Switching)
- High Current

Stress seen on LV GaNFET:

- High Temperature
- High Frequency

Burst Mode Stress Breakdown

Stress seen on HV GaNFET:

- Low Temperature
- Low Frequency (~static)
- High Voltage (Blocking)
- Low/No Current

Stress seen on LV GaNFET:

- Low Temperature
- Low Frequency (~static)

Reliability Stresses to Model

Relevant stress to model	Test method used to characterize
Static stress on HV GaNFET Drain	High Temperature Reverse Bias
Static stress on Gate	High Temperature Gate Bias
Switching stress on Gate	Gate Switching Reliability
Switching stress on HV GaNFET Drain	High Temperature Operating Life

Reliability Stresses to Model

Relevant stress to model	Test method used to characterize		
Static stress on HV GaNFET Drain	High Temperature Reverse Bias		
Static stress on Gate	High Temperature Gate Bias		
Switching stress on Gate	Gate Switching Reliability		
Switching stress on HV GaNFET Drain	High Temperature Operating Life		

HTRB Acceleration & Lifetime Models

GàNFast™

Reliability Stresses to Model

Relevant stress to model	Test method used to characterize
Static stress on HV GaNFET Drain	High Temperature Reverse Bias
Static stress on Gate	High Temperature Gate Bias
Switching stress on Gate	Gate Switching Reliability
Switching stress on HV GaNFET Drain	High Temperature Operating Life

Gate Reliability Acceleration Models

GaNFast[™]

Frequency Acceleration

Frequency \downarrow / Duty cycle \uparrow / Pulse width $\uparrow \Leftrightarrow$ Closer to static stress

Typical applications for GaN devices operate at >100KHz

Gate Reliability Lifetime Estimation

GaNFast™

Reliability Stresses to Model

Relevant stress to model	Test method used to characterize
Static stress on HV GaNFET Drain	High Temperature Reverse Bias
Static stress on Gate	High Temperature Gate Bias
Switching stress on Gate	Gate Switching Reliability
Switching stress on HV GaNFET Drain	High Temperature Operating Life

Mission Profile Driven HTOL (ZVS)

ZVS test bench replicates stresses seen in ACF application

GàNFast™

Failure Mode Matters

Failure Mode Matters

HTOL-based Lifetime Model

Navitas Proprietary & Confidential

Stress Profile in ACF

Voltage	DUT T _{case}	Typical time spent (1 charge/day)	Relevant reliability stress
460V	100°C	8 hours (33%)	HTOL
460V	50°C	4 hours (17%)	HTOL
340V	25°C	12 hours (50%)	HTRB HTOL
	460V 460V	460V 100°C 460V 50°C	460V 100°C 8 hours (33%) 460V 50°C 4 hours (17%)

Assuming worst case scenario at 240VAC

HTOL is more aggressive than HTRB

Lifetime Estimation Methodology

Mode	Voltage	DUT T _{case}	Typical time spent (1 charge/day)	Relevant reliability stress
Full Power	460V	100°C	8 hours (33%)	HTOL
Light Load	460V	50°C	4 hours (17%)	HTOL
No Load (burst)	340V	25°C	12 hours (50%)	HTOL

Lifetime Estimation in Charger Application

GàNFast™

Reliability → **Qualification** → **Release**

Reliability models on IC building blocks = Robust design

Mission profile driven reliability = Protected Customer

Reference	Test Conditions	Duration	Lots	S.S .	
JESD22-A113 J-STD-020	Preconditioning (MSL1): Moisture Preconditioning + 3x reflow: HAST, UHAST, TC & PC	N/A	з	308	PASS (0/308)
JESD22-A104	Temperature Cycle: -55°C / 150°C	1,000cy	3	77	PASS (0/231)
JESD22-A122	Power Cycle: Delta Tj = 100°C	10,000cy	3	77	PASS (0/231)
JESD22-A110	Highly Accelerated Stress Test: 130°C / 85%RH / 100V V _{DS}	96hrs	3	77	PASS (0/231)
JESD22-A108	High Temperature Reverse Bias: 150°C / 520V V _{DS}	1,000hrs	з	77	PASS (0/231)
JESD22-A108	High Temperature Gate Bias: 150°C / 6V V _{GS}	1,000hrs	з	77	PASS (0/231)
JESD22-A108	High Temperature Operating Life	1,000hrs	3	77	PASS (0/231)
JESD22-A108	Early Life Failure Rate	24 hrs	3	1,000	PASS (0/3,000)
JS-001-2014	Human Body Model ESD	N/A	1	3	PASS 0/3
JS-002-2014	Charged Device Model ESD	N/A	1	3	PASS 0/3

Comprehensive reliability monitoring

Metric	Results	
 Equivalent device hours tested*	1.5 billion hours	/
FIT*	0.6	

*Statistics calculated from HTOL tests

GaNFast[™]

GaNFast Chargers now in production

Fast

Up to 3x more power Up to 3x faster charging

Mobile

Half the size & weight

Universal

One charger for ALL your devices One and Done!!

AUKEY

27W

24W

30W

Navitas Proprietary & Confidential

Let's go GaNFast™