The GaNFast Revolution, Evolution

- Slow, legacy technology
- Exposed gate
- Unknown reliability

- Integrated Gate Drive
- Proven Reliability

“Detect to protect in 30 ns!”
120W Xiaomi Ultrafast Charger

- Xiaomi Note 11 Pro+
 - 4,500 mAh battery (graphene Li-ion)
 - 0-100% in 17 minutes

- 120W Ultrafast Charger
 - 55 x 55 x 28.4 mm = 86 cc = 1.4 W/cc
 - DCM boost PFC:
 - NV6134 GaNFast with GaNSense
 - HFQR DC-DC
 - NV6134 GaNFast with GaNSense
 - Planar transformer (shown)
Fast Chargers: ~2% of $2B: GaN Growth Ahead!

Note: Charger metrics as of October 2021. Shipments as of October 31st 2021.

Based on no customer-reported consumer failures for production shipments through October 10th, 2021.

Navitas estimated based on total GaN sales worldwide, estimated charger / adapter sales from Yole data.

© Navitas Semiconductor 2021

<table>
<thead>
<tr>
<th>Tier 1 OEMs</th>
<th>Aftermarket Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lenovo</td>
<td>Amazon</td>
</tr>
<tr>
<td>Navitas</td>
<td>Baseus</td>
</tr>
<tr>
<td>LG Electronics</td>
<td></td>
</tr>
<tr>
<td>Dell</td>
<td>Supernova</td>
</tr>
<tr>
<td>Navitas</td>
<td>AUKEY</td>
</tr>
<tr>
<td>Oppo</td>
<td>spigen</td>
</tr>
<tr>
<td>Navitas</td>
<td>Navitas</td>
</tr>
<tr>
<td>NVIDIA</td>
<td>Navitas</td>
</tr>
<tr>
<td>Xiaomi</td>
<td>NAVIFAST</td>
</tr>
<tr>
<td>Navitas</td>
<td>ANKER</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

160+ GaN Chargers in Mass Production
150+ GaN Chargers in Development (MP 2021-2022)
90%+ Mobile OEMs Designing With Navitas GaN ICs
30M+ GaN ICs Shipped(1)
Zero GaN Field-Failures(1)
Electrify Our World™

Consumer
- Up to 3x smaller, lighter, low-profile
- TV: UHD to 8K needs 4x power
- >$2B/yr potential

Solar
- 25% cost reduction of micro-inverters
- Up to 40% energy savings
- Improve payback by 10%+
- Residential potential >$1B/yr

Data Center: Save $1.9B/yr
- 44% of cost is electricity, GaN could reduce by up to 10%
- Save >15 TWh or $1.9B/yr, 2-month ROI
- $1B+ /yr potential

EV: Accelerate Adoption by 3 years
- 3x faster charging
- 70% energy savings enables 5% longer range, or 5% lower battery cost
- >$2.5B/yr potential in 2030

GaN is a breakthrough new technology

“Navitas: excellent partner, industry-leading GaN ICs”

“Navitas advantages: simplicity of driving, high-speed, reliability & compact form factor.”

© Navitas Semiconductor 2021

See end slide for references
GaNFast is Green: Accelerating Major Customers’ Net Zero and Carbon Neutral Goals

GaN Power ICs Reduce CO₂ Emissions

4x-10x lower component CO₂ footprint than silicon (1)

28% lower lifetime CO₂ footprint for chargers / adapters (2)

Accelerate transition from ICE to EV by 3 years, saving 20%/yr of road sector emissions by 2050 (4)

GaN addresses 2.6 Gton / year by 2050 (5)

(1) Navitas and Earth-Shift Global analysis. 4x lower for 2021, 10x lower by 2022 per life-cycle analysis
(2) Navitas and Earth-Shift Global estimated based on 65W charger per life-cycle analysis
(3) Navitas estimate based on GaN vs Si total life-cycle analysis.
(4) DNV estimate for 75%-adoption milestone pull-in, total road sector benefit
(5) Company information, DNV GL, EPA, IEA, International Renewable Energy Agency (IRENA). See 5-7-21 Investor presentation for details (filed with SEC). Derived from demand and energy efficiency CO₂ reduction of 1.4 Gt; assumes a $0.12 / kWh cost of electricity and a carbon to energy ratio of 0.00071 tons / kWh, aligned with the EPA’s marginal emission rate.

© Navitas Semiconductor 2021
1. Based on Navitas measurements comparing typical 150W 65 kHz Si-based AC/DC power adapter to 150W 1MHz GaN-based power adapter prototype.

2. Based on information provided to management by potential customers.

3. References to Slide 5

4. Based on estimates from Gartner, Pulsnews, WitsView, Statista and Navitas estimates.

5. Navitas est. vs. Si-based 500W residential micro-inverters assuming GaN-based inverter enables 40% reduced power loss and 25% lower inverter costs.

7. Navitas engineering estimate 6.6 kW Si OBC vs. 21 kW GaN OBC assuming a 90 kWh battery and 80A wall charge limit.

8. Assumes 150 kW traction inverter, 100 kWh battery, $100/kWh battery cost and typical 230 mile range. Based on DNV and Navitas analysis.

9. Based on BCG Research, Yole Research and Navitas analysis.

10. Navitas estimate based on discussions with major suppliers of power electronics to the electric vehicle industry.

11. Navitas estimate based on a) Navitas server/datacom forecast & AAAS data, b) $0.12/kWhr, c) Si vs. GaN $/W and d) data center loading profile.

12. Navitas estimated based on known existing Si-based solutions to deliver >500A next-generation data processors to Navitas targets for new GaN-based AC/DC and DC/DC for these same next-generation data processors.

14. Navitas measurements based on existing Si-based 3.2kW AC/DC server power supply to a 1 MHz GaN-based 3.2kW AC/DC prototype.