GaN-based High Frequency and High-power Density 2-in-1 Bidirectional OBCM Design for EV Application

Minli Jia, Hao Sun
Navitas Semiconductor Shanghai EV Design Center, Shanghai, China

Introduction
- The integrated design of OBC and LV DC/DC can reduce the system size, improve the power density and reduce the cost.
- Wide-band gap semiconductor device GaN brings an opportunity to further improve the power density of Power-Supply-Unit in EV.

System Topology
- Interleaved CCM Totem-pole PFC for Bi-AC/DC Stage.
- Bi-directional CLLC with delay-time control of wide voltage range output, ZVS and high switching frequency (450 kHz~1.2 MHz) range for Bi-DC/DC Stage.
- Hard switching full bridge for LV DC/DC.
- All 650V GaN devices for high voltage side.

Bi-AC/DC Stage
- Totem-pole PFC per phase parameter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vac</td>
<td>220 V</td>
</tr>
<tr>
<td>iac_RMS</td>
<td>16 A</td>
</tr>
<tr>
<td>Vbus</td>
<td>400 V</td>
</tr>
<tr>
<td>f_Line/f_s</td>
<td>50 Hz / 100 kHz</td>
</tr>
</tbody>
</table>

$$L_{PFC_min} = \frac{V_{bus}^2}{k_{Ripple} \cdot \sqrt{2} \cdot I_{Ac_RMS} \cdot 2 \cdot f_s}$$

- Usually, the value of $$k_{Ripple}$$ is set to 1 for per-phase current. Based on the parameters in Table 1, minimum inductance satisfying the demand is 45 uH.
- High-flux core, low loss for high frequency applications, volume is reduced by about 20% compared with the traditional 50 kHz PFC inductor design.

Bi-DC/DC Stage
- LC resonant circuit as a second-order system is suitable for phase plane analysis.
- Delay-time control can achieve high gain output adjustment for DC/DC.

Phase plane analysis for half switching cycle
Navitas

Characters of Bi-DC/DC Stage and Mag. Design

- $f_{s} > f_{r}$ is maintained throughout the output voltage range and keeping "V" shape.
- Larger Angle α means larger system gain.
- Narrow f_s range and good for transformer design.

Functions of Navitas NV651X-series GaN devices

- 12~18 V for DRIVE to SK.
- Integrated level-shift and deglitch circuit for improved anti-interference performance
- GaNFast power ICs are easy-to-use, highspeed, high-performance ‘digital-in, power-out’ building blocks.
- Monolithic integration of GaN gate drive & GaN power stage enables “zero loss in turn-off because the gate-drive loop has ~zero impedance,” eliminates parasitic gate-loop inductance and prevents gate ringing and glitching.

2-in-1 OBC Prototype and key waveforms

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{cc}</td>
<td>85-265 V</td>
</tr>
<tr>
<td>V_{bat}</td>
<td>250-500 V</td>
</tr>
<tr>
<td>f_{s}</td>
<td>32 A</td>
</tr>
<tr>
<td>f_{s}</td>
<td>23.5 A</td>
</tr>
<tr>
<td>Power</td>
<td>6.6 kW charging, 220 V_{bat}/6.0 kVA discharging</td>
</tr>
<tr>
<td>L_{DC}</td>
<td>50 μH</td>
</tr>
<tr>
<td>f_{s}</td>
<td>100 kHz</td>
</tr>
<tr>
<td>Res. Inductor</td>
<td>4.0 μH</td>
</tr>
<tr>
<td>Res. Cap.</td>
<td>40 nF (equivalent)</td>
</tr>
<tr>
<td>Res. Frequency</td>
<td>400 kHz</td>
</tr>
<tr>
<td>Trans. turns ratio</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Thermal and Efficiency

- GaN device are all below 110°C which verifies the feasibility of heat dissipation.
- GaN based high-frequency transformer is more than 50% smaller than that of Si based design.

Discharging 6.0 kVA non-linear load

Prototype "2-in-1" OBC dimensions

- Platform set-up

GaNFast functionality

Typical double-pulse test waveform

Comparison of transformer volumes at different f_{s}

Table 2 Main parameters of 2-in-1 OBC

- Volume 2.46 L
- Power 6.0 kW
- Efficiency
 - Charging mode: 94.57%
 - Discharging mode: 95.33%

Efficiency of OBC @ charging and discharging

- Efficiency of HV-LV DC-DC
 - Charging mode: 95.36%
 - Discharging mode: 95.32%

Efficiency of HV-UV DC-DC

- Charging mode: 93.89%
- Discharging mode: 93.35%

Platform set-up

Discharging 6.0 kVA non-linear load

Feasibility of GaN in high power, high-frequency applications is verified

Paper Allocation: H01-8161

9 May 2023 15:05-17:00

PCIM Europe

9 - 11.5.2023

NUREMBERG, GERMANY