This presentation includes “forward-looking statements” within the meaning of Section 21E of the Securities Exchange Act of 1934, as amended. Forward-looking statements may be identified by the use of words such as “we expect” or “are expected to be,” “estimate,” “plan,” “project,” “forecast,” “intend,” “anticipate,” “believe,” “seek,” or other similar expressions that predict or indicate future events or trends or that are not statements of historical matters. These forward-looking statements include, but are not limited to, statements regarding estimates and forecasts of other financial and performance metrics and projections of market opportunity and market share. These statements are based on various assumptions, whether or not identified in this presentation. These statements are also based on current expectations of our management and are not predictions of actual performance. Such forward-looking statements are provided for illustrative purposes only and are not intended to serve as, and must not be relied on by any investor as, a guarantee, an assurance, a prediction or a definitive statement of fact or probability. Actual events and circumstances are difficult or impossible to predict and will differ from assumptions and expectations. Many actual events and circumstances that affect performance are beyond our control. Forward-looking statements are subject to a number of risks and uncertainties, including the possibility that the expected growth of our business will not be realized, or will not be realized within expected time periods, due to, among other things, the failure to successfully integrate acquired businesses into our business and operational systems; the effect of acquisitions on customer and supplier relationships or the failure to retain and expand those relationships; the success or failure of other business development efforts; our financial condition and results of operations; our ability to accurately predict future revenues for the purpose of appropriately budgeting and adjusting our expenses; our ability to diversify our customer base and develop relationships in new markets; our ability to scale our technology into new markets and applications; our ability to realize our potential pipeline opportunities; the effects of competition on our business, including actions of competitors with an established presence and resources in markets we hope to penetrate, including silicon carbide markets; the level of demand in our customers’ end markets, both generally and with respect to successive generations of products or technology; our ability to attract, train and retain key qualified personnel; changes in government trade policies, including the imposition of tariffs; the impact of the COVID-19 pandemic on our business, results of operations and financial condition; the impact of the COVID-19 pandemic on the global economy, including but not limited to our supply chain and the supply chains of customers and suppliers; regulatory developments in the United States and foreign countries; and our ability to protect our intellectual property rights. These and other risk factors are discussed in the Risk Factors section beginning on p. 15 of our annual report on Form 10-K for the year ended December 31, 2022, which we filed with the Securities and Exchange Commission (the “SEC”) on April 3, 2022 and as thereafter amended, and in other documents we file with the SEC, including our quarterly reports on Form 10-Q. If any of these risks materialize or our assumptions prove incorrect, actual results could differ materially from the results implied by these forward-looking statements. There may be additional risks that we are not aware of or that we currently believe are immaterial that could also cause actual results to differ materially from those contained in the forward-looking statements. In addition, forward-looking statements reflect our expectations, plans or forecasts of future events and views as of the date of this presentation. We anticipate that subsequent events and developments will cause our assessments to change. However, while we may elect to update these forward-looking statements at some point in the future, we specifically disclaim any obligation to do so. These forward-looking statements should not be relied upon as representing our assessments as of any date subsequent to the date of this presentation.

This presentation also contains estimates and other statistical data made by independent parties and by us relating to market size and growth and other data about our industry. This data involves a number of assumptions and limitations, and you are cautioned not to give undue weight to such estimates. Neither we nor any other person makes any representation as to the accuracy or completeness of such data or undertakes any obligation to update such data after the date of this presentation. In addition, projections, assumptions and estimates of our future performance and the future performance of the markets in which we operate are necessarily subject to a high degree of uncertainty and risk.

For further information with respect to our company, we refer you to our most recent annual report on Form 10-K and our most recent quarterly report on Form 10-Q, filed with the SEC. In addition, we are subject to the information and reporting requirements of the Securities Exchange Act of 1934, as amended, and, accordingly, we file periodic reports, current reports, proxy statements and other information with the SEC. These periodic reports, current reports, proxy statements and other information are available for review at the SEC’s website at http://www.sec.gov.

All product and company names are trademarks™ or registered® trademarks of their respective holders.
The Fossil Fuel Challenge

Energy Supply

Renewables

Fossil Fuels 80%

Energy Consumption

Electrical

Combustion 80%

Only 20% Electrified
Pure-Play, Next-Gen Power Semiconductors

<table>
<thead>
<tr>
<th>Feature</th>
<th>GaN and SiC Replacing Si</th>
<th>2024-2025 Timeframe</th>
<th>2019 Study of 65W Fast Chargers</th>
<th>2022 Customer Statement for 2.7 kW Data Center AC-DC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 20x Faster Switching(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Up to 3x Smaller & Lighter(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Up to 40% Energy Savings(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Up to 3x Higher Power Density(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Up to 3x Faster Charging(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Up to 25% Lower System Cost(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GaN and SiC replacing Si in next-generation power applications

1. Statistical data is based on Navitas estimates of GaN-based systems compared to Si-based estimates in the 2024-2025 timeframe. Based on Navitas measurements of select GaN-based mobile wall chargers compared to Si-based chargers with similar output power, incl. 2019 study of 65W fast chargers, 2022 customer statement re 2.7 kW data center AC-DC
2. Navitas estimates based on customer feedback as the expected system cost saving overtime as of April 2023
Navitas

Right Time, Right Technology, Right Company

Technology Development

- Founded
- First GeneSiC
 1200V Transistors
- First GaNFast
 Power IC prototype
- First GaNFast
 Half-Bridge Power IC prototype
- 30+ Patents(2)
- World’s First GaN
 Fast Charger
- GaNFast Mass Production
- First 1,700 V
 SiC Schottky Diodes
- 100+ Patents(2)

Validation

- First Navitas
 Design Center
- First 6,500 V
 SiC MOSFETs
- First 1,700 V
 SiC Schottky Diodes
- First GaNFast
 Half-Bridge Power IC
- First GaNSafe
 Power IC
- First GaNSense
 Control Power IC

Mass Adoption

- GaN
- SiC
- 100M GaN + 12M SiC shipped
- ~4%
- ~30%
- GaN/SiC share
 of Si market (1)
- First SiCPAK Module
- First GaNSafe
 Power IC
- First GaNSense
 Half-Bridge Power IC
- First GaNFast
 Half-Bridge Power IC
- First GaNSense
 Control Power IC
- First GaNFast
 Mass Production
- First GaN
 Fast Charger
- World’s First GaN
 Fast Charger
- First GeneSiC
 1200V Transistors

1. Estimated based on Power SiC/GaN Compound Semiconductor Market Monitor, Q1 2023, Yole Intelligence
2. Granted or pending

Copyright Navitas Semiconductor, 2023
Right Partnership: Navitas + TSMC

- **Technology Development**
 - 2004: Founded
 - 2011: First GeneSiC
 - 2012: First GaNFast
 - 2013: First 1200V Transistors
 - 2014: First Prototypes
 - 2015: First GaNFast Power IC prototype
 - 2016: 30+ Patents
 - 2017: First GaNFast Mass Production
 - 2018: World’s First GaN Fast Charger
 - 2019: GaNFast Mass Production

- **Validation**
 - First GaNSense Control Power IC
 - First GaNSafe Power IC

- **Mass Adoption**
 - 2020: First GaNSense Half-Bridge Power IC
 - 2021: First GaNSafe Power IC
 - 2022: First GaNSense
 - 2023: First GaNSafe
 - 2024: First GaNSense
 - 2025: First GaNSafe
 - 2026: First GaNSense
 - 2027: First GaNSafe
 - 2028: First GaNSense

- **GaN/SiC share of Si market**
 - ~4%
 - ~30%

- **Estimated SiC and GaN Market Sizes**
 - $2Bn
 - $4Bn
 - $6Bn
 - $8Bn
 - $10Bn

1. Estimated based on Power SiC/GaN Compound Semiconductor Market Monitor, Q1 2023, Yole Intelligence
2. Granted or pending

Copyright Navitas Semiconductor, 2023
• Vulnerable
• Difficult to use
• Unknown reliability

✓ Robust
✓ Easy to use
✓ Proven reliability

GaNFast plus:
✓ Autonomous protection
✓ Loss-less current sensing

GaNSense plus:
✓ Integrated HS, LS, level-shift isolation
✓ Complete protection

GaNSense plus:
✓ LV silicon system controller
✓ Fewest components

Copyright Navitas Semiconductor, 2023
100,000,000+
Shipped!
Based on Navitas testing of 1200V SiC MOSFETs vs. competitor products

- Patented Trench-Assisted Planar SiC MOSFETs
- Highest Performance, Voltage Range & Ruggedness
- Up to 6.5 kV
- Cool Operation
- Long Short-Circuit Withstand Time
- High-Power Paralleling
- 100%-Tested Robust Avalanche
- Fast Switching

Copyright Navitas Semiconductor, 2023
Accelerating Mobile: Navitas wins 100% Milestones(1)

Fast Charger Milestones in Terms of Wattage

Source: Counterpoint Research

• Global electricity supply +2.3x by 2050\(^{(1)}\)
• Solar / energy-storage systems (ESS) up from ~2% to 38\%\(^{(2)}\)
• Energy storage critical to balance supply / demand

1. DNV Energy Transition Outlook 2022, updated January 2023. Grid-connected energy supply estimated to increase from 27 to 62 PWH/year.
2. DNV: Solar/ESS grows to 38% of supply by 2050. Historical data per IEA WEB (2022), GlobalData (2022)
Accelerating EV: Faster Charging (OBC and Roadside)

Copyright Navitas Semiconductor, 2023
Accelerating Time-to-Market: Unique System Design Centers

Power System Platform Design
High Frequency, High Efficiency, High Density, High Integration

Semi Design
Application-specific GaN / SiC
System know-how drives innovation

Customer Co-Development
Joint Labs / Joint Development
Close customer co-op for qualification, certifications, production readiness

Mass Production
Fast time to market

System design evaluation & feedback

Electrical, thermal, mechanical, EMI, BOM cost, manufacturing and yields

Customer Revenue Ramp
Electrical, thermal, mechanical, EMI, BOM cost, manufacturing and yields
Accelerating $1B Customer Pipeline, Diverse markets

Mobile / Consumer
- Top 5/5 smartphone OEMs and top 5/5 notebook OEMs in development or production\(^1\)
- ANKER
- DELL
- Lenovo
- oppo
- SAMSUNG
- mi
- xiaomi

Data Center
- Tier-1 PSU ODMs in development\(^1\)
- Power System Engagements
- End Customer Targets
- AWS
- Google Cloud
- SUNGROW
- Google Cloud
- Azure
- Bloomenergy
- Apeva
- ABB
- LG
- Magna
- BYD

Solar / Energy Storage Systems
- Majority of top 10 OEMs engaged\(^1\)

EV / eMobility
- Tier-1 customers and engagements\(^1\)

Appliance / Industrial
- Top 7/10 OEMs engaged\(^1\)

• Q2 2023: Pipeline up 30% to $1 billion, with more projects, more $ potential in all markets

1. Navitas estimates of top OEMs in each respective market and their existing customer engagements. Appliance/Industrial ‘top 10’ based on Navitas estimate.
2. “Pipeline opportunity” reflects estimated potential future business based on interest expressed by potential customers for qualified programs, stated in terms of estimated revenue that may be realized in one or more future periods. Pipeline opportunity is not a proxy for backlog or future revenue or other measure or indicator of financial performance. Rather, Navitas uses customer pipeline as a statistical metric to indicate relative changes in future potential business across various product markets. Time horizons vary accordingly, based on product type and application. Actual business realized depends on ultimate customer selection, program share and other factors.
3. Navitas estimates for potential customer revenue across GaN or SiC in the market stated.
Accelerating Growth & Diversity

Reported Revenue\(^{(1)}\) ($M)

<table>
<thead>
<tr>
<th>Year</th>
<th>Actual</th>
<th>Guidance ((^{(2)}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2019</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>2020</td>
<td>$11.4</td>
<td>$11.4</td>
</tr>
<tr>
<td>2021</td>
<td>$18.1</td>
<td>$18.1</td>
</tr>
<tr>
<td>2022</td>
<td>$31.3</td>
<td>$33.1</td>
</tr>
<tr>
<td>2023</td>
<td>$62.7</td>
<td>$65.2</td>
</tr>
</tbody>
</table>

Revenue Mix\(^{(1)}\)

- **2020**
 - Mobile / Consumer: 100%
 - Asia: 92%
- **2022**
 - Europe: 32%
 - Asia: 43%
 - US: 24%

- **2023 Q3 Guidance**
 - Actual: $21.0 (±2%)
 - Q1: $13.4
 - Q2: $18.1
 - Q3: $21.0

- **Q2 '23 revenue**
 - +110% from Q2 ‘22
 - +35% from Q1 ‘23
- **Gross Margin**: 41.5%
- **Cash**: $177.7M (no debt)
- **Shares**: 175M
- **Significant diversification in markets, geography**

1. Reported revenue not pro forma for GeneSiC financials for the period prior to the close of the acquisition of GeneSiC on 8/15/2022. Only includes GeneSiC revenue for the period post transaction close (8/15/2022 – 12/31/2022)
2. Q3’23 and CY2023 guidance as of 8-14-23 only. Not updated

Copyright Navitas Semiconductor, 2023
Accelerating Sustainability

Every GaNFast™ IC saves 4 kg CO₂

- 4x-10x lower component CO₂ footprint than silicon
- 28% lower lifetime CO₂ footprint for chargers / adapters
- Accelerates transition from ICE to EV by 3 years, saving 20%/yr of road-sector emissions by 2050
- GaN + SiC save up to 6 Gton / year by 2050

February ’22 First GaN sustainability report based on global standards.

May ’22 World’s first semiconductor company CarbonNeutral® certified

August ’22 First 100,000 tons CO₂ saved (Over 170,000 as of August 2023)

October ’22 Recognized for industry-leading sustainability reporting
GaNSafe™
The World’s Safest GaN Power Semiconductor

Technology Introduction

Charles Bailley
Sr. Director Business Development

Taipei, September 2023
ir@navitassemi.com

Copyright Navitas Semiconductor, 2023
Accelerating Data Center Power, Efficiency

- AI driving power, and power density⁽¹⁾
- EU “Titanium” efficiency specification in force⁽³⁾
- Privacy concerns, edge traffic: drive localized data centers⁽²⁾

Today: AC-DC = 100 W/in³

1. Cerebras white paper / website
2. TD Cowen, per “AI to drive data center investments”, LightReading.com, 4-26-23

Copyright Navitas Semiconductor, 2023
1. Navitas company estimates, potential market opportunity in 2026 is $22B+ for GaN and SiC, replacing certain of the silicon market share. Axes not to scale.
GaNFast™: Ultimate Performance and Reliability

- **Discrete Silicon**
 - Old
 - Slow
 - Low efficiency
- **Discrete GaN**
 - Robust
 - Easy to use
 - Proven reliability

GaNFast plus:
- Autonomous protection
- Loss-less current sensing

GaNSense plus:
- Short-Circuit Detection
- Ultra-fast autonomous protection
- Robust, cool packaging
- Programmable dV/dt turn-ON and OFF

Efficiency

Reliability

Speed

Integration

Copyright Navitas Semiconductor, 2023
GaNSafe™: The World’s Safest GaN Power Semiconductor

High-Speed Short-Circuit Protection

- 2 kV ESD
- Easy EMI
- Easy Cooling
- 800 V max
- Robust Operation
From GaNFast™ to GaNSafe™, Max 4th-Gen Reliability

- **Discrete GaN = high risk**
 - Weak gate, high loop inductance
 - Shoot-thru risk multiplied by increased di/dt in high-power applications
- **GaNFast™** integrated, regulated gate drive, zero loop inductance
 - Fewer components, smaller PCB,
 - Higher efficiency, lower system cost
- **GaNSafe™** optimized for high power
 - More protection (300 ns Desat SCP, OTP, UVLO, ESD, etc.)
 - More control (dV/dt ON & OFF, etc.)
 - Industry-standard, robust, cool packaging
GaNSafe™: Reliable high-power in only 4 pins

- 100 V/ns Immunity with wide-range input (12~20V)
- Integrated VGS regulation maintains optimized VGS with reliability margin
- No gate-loop inductance or ringing
- 100 V/ns Immunity with wide-range input (12~20V)
- All pins 2kV HBM
- Ultra-low quiescent current makes high-power GaN feasible in 4-pin package
- Ultra-fast Short-Circuit Desat detection
- ESD (Level Shift, Deglitch, UVLO, and Control)
- Internal VCC Supply (ultra-low ΙQUIESCENT)
- Integrated Miller Clamp
- Negative gate bias not required
- Internal SCP, dV/dt
- PTAT
- VGS Reg
- Miller Clamp P/D Block
- GaN Power Device

Source

Drain

Copyright Navitas Semiconductor, 2023
GaNSafe™ Delivers High-Power Reliability

- **Double-pulse test:**
 400 V, 70 A, $R_{\text{SERIES}} = 11$ mΩ

Discrete GaN

42 mΩ max

- **Significant spikes**
- **Excessive turn-ON ringing**
- **250 V undershoot**

45 mΩ max

(NV6513)

- **No voltage spikes**
- **No ringing**
- **No undershoot**
Discrete GaN Has Major Problems in High Power

Boost Mode:
LS Turn-OFF causes sever HS & LS V_{GS} ringing due to gate loop inductance coupled with higher di/dt when operating in high power applications.

Buck Mode:
LS gate is pulled-up as Switch Node rises, with simultaneous surge in I_{DS}.

400V 60A Simulation:
- Discrete GaN
- 25mΩ
- TOLL

V_{GS} rating violated:
Negative spike on LS Turn-OFF goes beyond -20V limit.
GaNSafe™: TOLL = Robust, Reliable Packaging

- TOLL = “Transistor Outline Lead-Less”
- 10 x 10 mm
- Mechanically robust, novel leadframe
 - Keyed V_{DRIVE} and SK pins
 - Improved mechanical performance
 - Fused source pins
 - Improved thermals
 - Passed IPC-9701 for long mechanical lifetime

1. IPC-9701 “Thermal Cycling Test Method for Fatigue Life Characterization of Surface Mount Attachments”

Integrated GaN gate drive, protection and features, in 4-pin industry-standard thermally-enhanced package...
GaNSafe™ Optimized System-Level Cooling

- Optimized, system-level cooling \(R_{\Theta J-A} \)
 - Larger, thicker Cu pad
 - High-conductivity die attach

1. Navitas' simulated temperature gradients for TOLL and QFN under identical system thermal design and 200 LFM airflow
<table>
<thead>
<tr>
<th>Component</th>
<th>Si 150 kHz LLC</th>
<th>300 kHz LLC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Transformer</td>
<td>PQ3628, Size: 36 x 28 x 24 mm</td>
<td>PQ3033, Size: 30 x 33 x 21 mm</td>
</tr>
<tr>
<td>Resonant Choke</td>
<td>PQ2618, Size: 26 x 18 x 19 mm</td>
<td>PQ2018, Size: 20 x 18 x 14 mm</td>
</tr>
<tr>
<td>Resonant Capacitor & Output MLCC</td>
<td>630 V, 10 nF 1206 *40pcs, 16 V, 10 uF 1206 *64pcs</td>
<td>630 V, 10 nF 1206 *12pcs, 16 V, 10 uF 1206 *50pcs = 40% fewer</td>
</tr>
<tr>
<td>Primary Switch</td>
<td>IPT60R055CFD7 *4pcs</td>
<td>NV6512C *4pcs</td>
</tr>
<tr>
<td>Protections & Features</td>
<td>1 kV ESD</td>
<td>SCP, 2 kV ESD, dV/dt Control</td>
</tr>
</tbody>
</table>

GaNSafe™ Yields Higher Density, Lower System Cost
Typical GaN discrete high-side schematic for use in high-power applications:

Eliminate costly DC-DC supply

- Use Boot Strap for high power applications: $1 saved per half-bridge
- Integrated Miller Clamp, no negative gate drive (V_{GS})
- Includes SCP protection and 2 kV ESD
GaNSafe™: Clear Leader in High Power

<table>
<thead>
<tr>
<th>Reference</th>
<th>Type</th>
<th>Robust Package</th>
<th>Minimum Pin-Count</th>
<th>Large Cooling Pad</th>
<th>Easy Cooling (Low Rth)</th>
<th>Robust High Voltage (Vds)</th>
<th>Robust Integrated Gate Drive</th>
<th>Robust Gate Voltage</th>
<th>Over Temp Protection</th>
<th>Short-Circuit Protection</th>
<th>Robust ESD (HBM)</th>
<th>Robust ESD (CDM)</th>
<th>Robust dv/dt</th>
<th>Easy EMI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Company A</td>
<td>Discrete GaN</td>
<td>TOLL</td>
<td>4</td>
<td>50 mm²</td>
<td>0.36 K/W</td>
<td>800 V</td>
<td>Y</td>
<td>20 V</td>
<td>50 ns</td>
<td>2 kV</td>
<td>1 kV</td>
<td>100 V/ns</td>
<td>(ON,OFF)</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Discrete GaN</td>
<td>QFN</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Discrete GaN</td>
<td>QFN</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Discrete GaN</td>
<td>TOLL</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Discrete GaN</td>
<td>GaNPX</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>MCM GaN</td>
<td>High-pin QFN</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>MCM GaN</td>
<td>High-pin QFN</td>
<td></td>
</tr>
<tr>
<td>Part#</td>
<td>V_DS (Cont, Max) (V)</td>
<td>V_DS (Dyn, Max) (V)</td>
<td>R_DS(ON) (Max 25°C) (mΩ)</td>
<td>I_D (Max) (A)</td>
<td>Package</td>
<td>Evaluation Kit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>----------------------</td>
<td>---------------------</td>
<td>--------------------------</td>
<td>--------------</td>
<td>----------</td>
<td>----------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NV6515</td>
<td>650</td>
<td>800</td>
<td>35</td>
<td>57</td>
<td>TOLL 10x10 Bottom-cool</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NV6513</td>
<td></td>
<td></td>
<td>45</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>NV6512</td>
<td></td>
<td></td>
<td>55</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>NV6511</td>
<td></td>
<td></td>
<td>98</td>
<td>22</td>
<td></td>
</tr>
</tbody>
</table>

1. Samples and collateral available immediately to qualified customers

TnR Ordering

<table>
<thead>
<tr>
<th>Ordering Type</th>
<th>Qty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mini-Reel (7” dia)</td>
<td>Qty500 Pcs “-MR” suffix</td>
</tr>
<tr>
<td>Standard (13” dia)</td>
<td>Qty2,000 Pcs</td>
</tr>
</tbody>
</table>

Air-cooled Heat Sink
Grease (2.3 W/m•K)
Al₂O₃ (170 W/m•K)
Grease (2.3 W/m•K)
Daughter Card
Screw torque: 1.5 N•m
GaNSafe™: Maximum Performance in Data Center Power

- Data center AC-DC ‘silver box’ (12V)
- CRPS185 form factor

<table>
<thead>
<tr>
<th>Power</th>
<th>2,800 W</th>
<th>3,200 W</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFC</td>
<td>8 x 32 mΩ</td>
<td>4 x 45 mΩ</td>
</tr>
<tr>
<td>DC-DC</td>
<td>4 x 32 mΩ</td>
<td>4 x 55 mΩ</td>
</tr>
<tr>
<td>Total</td>
<td>12 x GaNPX</td>
<td>8 x TOLL</td>
</tr>
</tbody>
</table>

33% fewer power components

Copyright Navitas Semiconductor, 2023
GaNSafe™: Higher Efficiency than Si in 3.2kW CRPS

- GaNSafe™ meets Titanium with higher power density at 300kHz
- CoolMOS does not meet Titanium at 300kHz F_{SW} in LLC stage
- GaNSafe™ meets EN55022 / CISPR22 Class A (CE and RE)
Combination 6.6 kW OBC + 3 kW DC-DC:

- **AC Input:** 90~265 V_{AC} up to 32 A
- **DC Output:** 470~860 V_{DC}, full load
- **Power Output:** 6.6 kW charging, 6.0 kVA discharging
- **Efficiency:** > 95% @ Full Load
- **DC-DC Output:** 9~16 V_{DC}

Mechanical:

- **Dimensions:** 210 x 192 x 61mm (≤ 2.5 litre)
- **Cooling:** -40 to +65°C (Cold Plate)
- **Communication:** IP 67, CAN Bus interface
• Navitas is the industry leader in GaN

• **GaNFast™**:
 - 100M+ shipped, 20-year warranty

• **GaNSafe™**:
 - Most protected, most reliable, safest GaN power semi
 - Benchmark efficiency, power density, reliability
 - Robust, 4-pin TOLL
 - Easy to use, fast time-to-market
 - Demonstrated performance for AI, EV, Solar and more
 - Strong customer pipeline
 - **Driving GaN into high power**