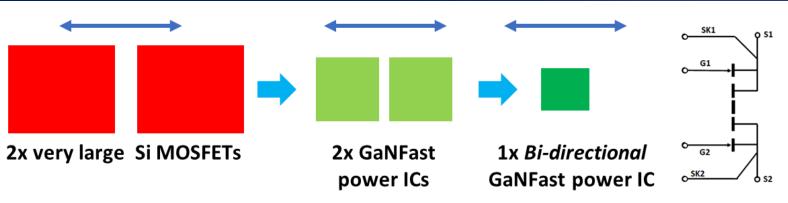
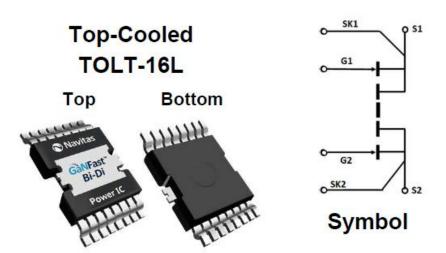
Bi-Directional GaNFast™ Switches Open Doors for New High-Performance Topologies


Alfred Hesener, Senior Director Industrial & Consumer, Navitas Semiconductor

Bodo's
Wide Bandgap
Event 2024
Making WBG Designs Happen

GaN


World's First Bi-Directional GaNFast™ Power IC

4x smaller than SiC, bi-directional FET, 3x smaller than two uni-directional GaN, 9x smaller than silicon

- Multiple topologies benefit from bi-directional power flow control
- Bi-directional GaNFast power ICs are the smallest, most efficient, lowest system cost solution
 - Optimized for fast switching, AC voltage applications
 - Enable 'previously-impractical' topologies
 - Integrated circuitry ensures reliability
- Applications: Power Supplies, Industrial, Solar, Energy Storage, Motor drives
- Mass production target 2024

Bi-Directional GaNFast™ Power IC Unlock the Next Level of Performance

Feature

Very low switching losses

Very high switching frequency possible

Precise switch timing with low latency and dead time

High voltage ratings

Integrated substrate clamp

Impact

Reduce losses by >20% over SiC, >50% over Si

Very small / planar magnetic components

Improved control loop performance, low EMI

High robustness against transient overvoltages

Reduced dynamic onresistance drift

Benefit

Small / no heatsink, easier thermal design, higher reliability

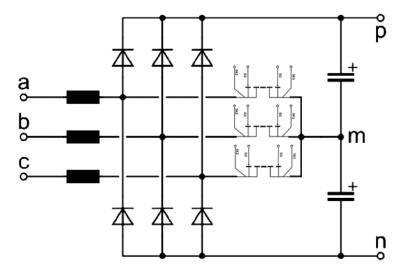
Reduced size and system cost

Smaller EMI filter →
system cost
improvement

Lower field failure rate, surge robustness

Repeatable performance

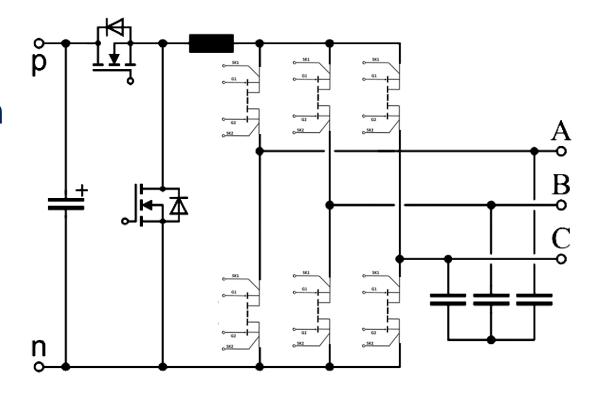
Extended technology comparison *



Switch configuration	Description	Chip area / Size / Complexity	Number of components	ON-state voltage drop	Switching loss	Switching frequency	Gate control complexity
D1 D3 D3 D4	Diode bridge + asymmetric IGBT	Very high	5	3.5V [2 diodes + 1 IGBT]	High	16kHz	Low
	Asymmetric IGBT + freewheeling diodes	Very high	4	2.5V [1 diode + 1 IGBT]	High	16kHz	Low
$ \begin{array}{c c} Q1 & G \\ E & C \end{array} $ $ \begin{array}{c c} D2 \\ C & G \end{array} $ $ \begin{array}{c c} Q2 \end{array} $	Back-to-back reverse- blocking IGBTs	High	2	2.0V [1 symmetric IGBT]	Very high	8kHz	Medium
Q1 G Q2 D TAT S TAT D D1 D2	Si power MOSFETs + JBS diodes	High	4	1.25V [1 diode + 1 MOSFET]	Low	60kHz	Low
D1 D1 G D2 D3 D4 G Q2	Back-to-back SiC power MOSFETs + antiparallel and series JBS diodes	Very high	6	1.25V [1 diode + 1 MOSFET]	Low	100kHz	Medium
$\begin{array}{c c} G_1 & & G_2 \\ \hline T_1 & & & T_2 \end{array}$	Four-terminal SiC monolithic BiDFET	Medium	1	0.5V [1 BiDFET]	Low	100kHz+	Medium
	Monolithic bidirectional GaN power IC	Lowest	1	0.5V [1 Bidirectional GaN power IC]	Lowest	500kHz+	Medium

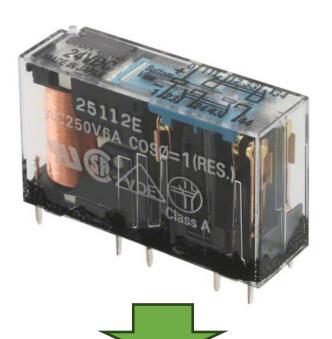
Bi-Directional GaNFast™ Power IC in Vienna Converter

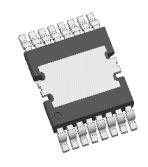
- Input: Universal AC, output: 800V (+/- 400 V)
- Switching frequency: 100 kHz
- Using GaNFast™ Bi-directional GaN in TOLT
- Very high efficiency and low complexity



Bi-Directional GaNFast™ Power IC in Current Source Inverter

- Inherently sinusoidal output
- Very high switching frequency possible through further reduction of the switching losses
- Bi-directional power flow
- Potential to optimize motor size and cost, through lower inductance

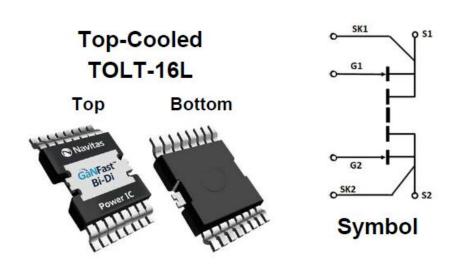

Bi-Directional GaNFast™ Power IC in Circuit Breakers



Replacing electromechanical switches with a solid-state switch

Significant advantages for <u>critical</u> applications:

- No arcing
- No degradation from vibration or shock
- Much smaller size and weight
- Fast response time
- No moving parts → better reliability, switch cycles
- Handles AC or DC
- Low power remote control



Bi-Directional GaNFast™ Power IC : Summary

- Bi-directional GaNFast™ power ICs are the smallest, most efficient, lowest system cost solution
 - Optimized for fast switching, AC voltage applications
 - Enable 'previously-impractical' topologies
 - Integrated circuitry ensures reliability

Navitas' GaNFast™ Bidirectional offers convincing solutions to enable new topologies for better performance and system cost savings

Discover more at navitassemi.com

